Recent results on elementary operators

Richard M. Timoney Trinity College Dublin

Elementary operators

A a C^* -algebra

elementary operator $T: A \rightarrow A$ is

$$Tx = \sum_{i=1}^{\ell} a_i x b_i$$

$$u = \sum_{i=1}^{\ell} a_i \otimes b_i \in M(A) \otimes M(A), \qquad T = \theta(u)$$

Special and general examples

Special: $L_ax=ax$, $R_bx=xb$, $\delta_ax=ax-xa$, $\delta_{a,b}=L_a-R_b$, $J_{a,b}x=(L_aR_b+R_aL_b)x=axb+bxa$ (ℓ small)

General: $\forall T \in \mathcal{E}\ell(A), \forall I \text{ ideal of } A, T(I) \subset I.$

 $T: \mathcal{K}(H) \to \mathcal{K}(H)$ bounded linear $\Rightarrow T$ is in s.o.t. closure of $\mathcal{E}\ell(\mathcal{K}(H))$.

Haagerup norm estimate

$$Tx = \sum_{i=1}^{\ell} a_i x b_i$$

$$Tx = [a_1, a_2, \ldots, a_\ell](x \otimes I_\ell) egin{bmatrix} b_1 \ b_2 \ b_\ell \end{bmatrix} = \mathbf{a}(x \otimes I_\ell) \mathbf{b}$$

$$||T|| \le \inf ||\mathbf{a}|| ||\mathbf{b}|| = \inf \frac{1}{2} (||\mathbf{a}||^2 + ||\mathbf{b}||^2)$$

$$||u||_h \stackrel{def}{=} \inf \left\{ ||\mathbf{a}|| ||\mathbf{b}|| : u = \sum_{i=1}^{\ell} a_i \otimes b_i \right\}$$

We have $\|\theta(u)\| \leq \|u\|_h$

$$T^{(2)}: M_2(A) \to M_2(A)$$
 is

$$T^{(2)} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} Tx_{11} & Tx_{12} \\ Tx_{21} & Tx_{22} \end{pmatrix}$$

$$T^{(2)}(X) = \sum_{i=1}^{\ell} (a_i \otimes I_2) X(b_i \otimes I_2)$$

Same estimate $||T^{(2)}|| \leq ||u||_h$.

In general
$$\|T^{(k)}\| \leq \|u\|_h (\forall k=2,3,\ldots) \Rightarrow$$
 $\|T\|_{cb} \stackrel{def}{=} \sup_k \|T^{(k)}\| = \|\theta(u)\|_{cb} \leq \|u\|_h$ Good — at least for $A = \mathcal{B}(H)$ equalty holds

In general $\|\theta(u)\|_{cb} = \|u\|_h \forall u \in A \otimes A \iff A$ is a prime C^* -algebra (Mathieu)

Can use the $\mathcal{B}(H)$ case as a way to compute $\|u\|_h$ for $u \in A \otimes A$ — find a faithful representation $\pi: A \to \mathcal{B}(H_\pi)$ and try to compute $\|T\|_{cb}$ on $\mathcal{B}(H)$ where $T = \theta((\pi \otimes \pi)(u))$.

Stampfli (1970):
$$u = a \otimes 1 - 1 \otimes b$$
, $\theta(u) = \delta_{a,b}$. On $\mathcal{B}(H)$, $\|\delta_{a,b}\| = \inf_{\lambda \in \mathbb{C}} \|a - \lambda\| + \|b - \lambda\|$

His proof used numerical range ideas to recognise equality in the estimate.

Stampfli techniques generalised to arbitary $u \in \mathcal{B}(H) \otimes \mathcal{B}(H)$ and equality in $\|\theta(u)\|_{cb} \leq \|u\|_h$ (Illinois J. 2003)

Used joint numerical ranges of $a_i a_j^*$ and of $b_i^* b_j$. $\{(\langle a_i a_j^* \xi, \xi \rangle)_{i,j=1}^\ell : \xi \in H, \|\xi\| = 1\}$

Theorem
$$T \in \mathcal{E}\ell(A)$$
, $Tx = \sum_{i=1}^{\ell} a_i x b_i$

Then
$$||T||_k = ||T||_{cb}$$
 for $k \geq \ell$

Proof. uses a generalisation of the Toeplitz-Hausdorff theorem to joint numerical ranges.

Central Haagerup tensor norm

'Obvious' extension of $\|\theta(u)\|_{cb} \leq \|u\|_h$ ($u \in A \otimes A$) notes $\theta((az) \otimes b - a \otimes (zb)) = 0$. $A \otimes_{Z,h} A = \text{quotient of } A \otimes_h A$ by the closed span of $\{(az) \otimes b - a \otimes (zb)\}$.

$$\theta_Z: A \otimes_{Z,h} A \to CB(A)$$

contraction: $\|\theta_Z(u)\|_{cb} \leq \|u\|_{Z,h}$.

Often isometric.

Primal ideals

An ideal $Q \subset A$ is n-primal if $J_1, J_2, \ldots, J_n \subset A$ ideals,

$$J_1J_2\ldots J_n=0\Rightarrow J_k\subset Q$$
 some k

Q is *primal* if it is n-primal for each n.

Somerset (JOT '98)

 $\|\theta(u)\|_{cb} = \sup\{\|u^Q\|_h : Q \subset A \text{ primal}\}$ where $u^Q = (\pi_Q \otimes \pi_Q)(u) \in (A/Q) \otimes (A/Q)$ and $\pi_Q : A \to A/Q$ is the quotient map.

Glimm ideals

A unital for now.

 $M\subset Z$ maximal ideal of centre. G=AM ideal of A generated by M is called a Glimm ideal of A. Somerset (JOT '98)

$$||u||_{Z,h} = \sup\{||u^G||_h : G \in \mathsf{Glimm}(A)\}$$

Isometry of θ_Z

Theorem (A, S & T) For A unital, θ_Z is isometric \iff each $G \in \operatorname{Glimm}(A)$ is primal.

Somerset established \Leftarrow part and showed that each G must be 3-primal (if θ_Z is isometric on derivations $u=a\otimes 1-1\otimes a$).

Proof of \Rightarrow requires a construction of u. And example of A to show G 3-primal $\forall G \in \operatorname{Glimm}(A) \not\Rightarrow G$ primal $\forall G \in \operatorname{Glimm}(A)$.

Step 0: G is n-primal \iff whenever $G \subset P_j$ and $P_j \in \text{Prim}(A) \forall j (1 \leq j \leq n)$ then $Q = \bigcap_j P_j$ primal.

Step 1: $\exists G \in \mathsf{Glimm}(A)$ not primal $\Rightarrow G$ not n-primal but G is (n-1)-primal (some $n \geq 2$). Hence $\exists P_j \in \mathsf{Prim}(A) \ (1 \leq j \leq n)$ such that $G \subset P_j \forall j$, $I = \bigcap_j P_j$ not primal but $R_j = \bigcap_{k \neq j} P_k$ is primal $\forall j$.

Step 2: Find $b_1, b_2, \ldots, b_n \in A$ orthog., positive norm 1, $||b_j + G|| = 1 \forall j$ but $P \in \text{Prim}(A) \Rightarrow \exists k, b_k \in P$.

End: $u = (\sum_{j} b_{j}) \otimes (\sum_{j} b_{j}) - \sum_{j} b_{j} \otimes b_{j}$, $||u||_{h} = 2(1 - \frac{1}{n})$

Theorem

A still unital, $\ell > 0$ now fixed. $u = \sum_{i=1}^{\ell} a_i \otimes b_i$ arbitrary (of length $\leq \ell$).

 $\|\theta_Z(u)\|_{cb} = \|u\|_{Z,h}$ for all such $u \iff \text{each}$ $G \in \text{Glimm}(A)$ is N-primal for $N = \ell^2 + 1$.

Formula for ||T||

For $X,Y\in M_\ell^+$, define the tracial geometric mean $\operatorname{tgm}(X,Y)=\operatorname{trace}((X^{1/2}YX^{1/2})^{1/2}).$ For $\mathbf{b}=[b_1,b_2,\ldots,b_\ell]^t$, $\eta\in H$, $\|\eta\|=1$, let

$$Q(\mathbf{b}, \eta) = (\langle b_i^* b_j \eta, \eta \rangle)_{i,j=1}^{\ell}$$

For
$$T \in \mathcal{E}\ell(\mathcal{B}(H))$$
, $Tx = \sum_{i=1}^\ell a_i x b_i$,

$$\|T\| = \sup_{\xi,\eta} \operatorname{tgm}\left(Q(\mathbf{a}^*,\xi),Q(\mathbf{b},\eta)\right)$$

Corollary (A, M, S using Magajna) If $T \in \mathcal{E}\ell(A)$ and A antiliminal, then $||T||_{cb} = ||T||$.

Corollary $T \in \mathcal{E}\ell(A)$, $Tx = \sum_{j=1}^{\ell} a_j x b_j \Rightarrow ||T||_{cb} \leq \sqrt{\ell} ||T||$.

Theorem $T \in \mathcal{E}\ell(A)$, T compact $\Rightarrow Tx = \sum_{j=1}^{\ell} a_j x b_j$ with $a_j, b_j \in \mathcal{K}(A)$.