Skip to main content

Trinity College Dublin, The University of Dublin

Trinity Menu Trinity Search

You are here

Analysis Seminars

Analysis Seminars for this Semester

Tuesday 25th September, 2018 (place: UCD Science North 125 ) 3.30pm

Speaker: H. Render
Title: The Green function for the exterior cylinder

Abstract In this talk we present a formula for the Green function of the exterior cylinder and we discuss basic properties and estimates of the Green function. Related to this are suitable estimates of the cross product of scaled Bessel functions.

Tuesday 9th October, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: R. Levene
Title: State conversion using von Neumann algebras

Abstract Nielsen's theorem gives a simple characterisation of the pairs of pure finite-dimensional quantum states for which one may be converted to the other using "local operations and classical communication". We will give a mathematical introduction to this important result from quantum information theory, along with a new generalisation to an infinite-dimensional von Neumann algebraic context. This is based on joint work with Jason Crann, David Kribs and Ivan Todorov.

Tuesday 16th October, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: M. Golitsyna
Title: Overconvergence Properties of Dirichlet series

Abstract In this talk we discuss the properties of the subsequences of the partial sums of general Dirichlet series. It is known that a Dirichlet series of the form $\sum_{j=0}^\infty a_je^{-\lambda_js}$ either diverges, converges on some half-plane $\{\mathrm{Re}(s)>c\}$ to a holomorphic function $f$ or converges on the whole complex plane. In case where the series converges on a half-plane it is possible that the function $f$ has a holomorphic extension to a larger domain that strictly contains the half-plane. We will give sufficient conditions for a subsequence of partial sums of the series to converge at every regular point of $f.$ We apply potential theoretic techniques to prove the results.

Tuesday 30th October, 2018 (place: UCD Science North 125 ) 3.00pm

Speaker: M. Ghergu
Title: Isolated Singularities for a semi-linear elliptic system

Abstract We are concerned with the study of a semi-linear elliptic system featuring power type non linearities in the critical case. We classify all non negative solutions around their isolated singularity by using moving spheres method and invariant quantities.
This is a joint work with H. Shagholian (Stockholm) and S. Kim (Seoul)

Tuesday 6th November, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: C. Boyd
Title: Localisation and Positivity of Orthogonally Additive Polynomials

Abstract We show how the localisation technique allows to characterise orthogonally additive polynomials which are the power of a linear functional and to bound the norm of the absolute value of an orthogonally additive polynomial, $P$, by the norm of $P$.
These results are joint work with R. Ryan and N. Snigireva (NUI Galway).

Tuesday 13th November, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: M. Manolaki
Title: Optimal polynomial approximants

Abstract Given a Hilbert space $H$ of analytic functions on the unit disc and a function $f$ in $H$, a polynomial $p_n$ is called an optimal polynomial approximant of degree $n$ of $1/f$ if $p_n$ minimizes $\|pf - 1\|$ over all polynomials $p$ of degree at most $n$. This notion was introduced to investigate the phenomenon of cyclicity in certain function spaces, including the classical Hardy, Bergman and Dirichlet spaces. In this talk, we will discuss the behaviour of the sequence of optimal polynomial approximants on subsets of the unit circle. Our main theorem uses a new result on simultaneous zero-free approximation, which is of independent interest. (Joint work with Catherine B\'en\'eteau, Oleg Ivrii and Daniel Seco.)

Tuesday 20th November, 2018 (place: UCD Science North 125 ) 3.00pm

Speaker: R. Ryan (NUIG)
Title: The Diameter Norm

Abstract The *diameter* of a continuous function $f$ on a compact Hausdorff space $K$ is $\sup\lbrace |f(s)-f(t)|, s, t \mbox{ belonging to } K\rbrace$. We look at some recent results about diameter-preserving operators between spaces of continuous functions and we give some applications to the geometry of spaces of orthogonally additive polynomials on $C(K)$ spaces. (Joint work with C. Boyd and N. Snigireva)

Tuesday 27th November, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: S. Gardiner
Title: An analogue of Rado's theorem for subharmonic functions

Abstract This talk will verify a conjecture of Kral (1985), that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere. (This is joint work with Tomas Sjodin.)

Tuesday 4th December, 2018 (place: UCD Science North 125 ) 4.00pm

Speaker: R. Smith
Title: User-friendly polyhedrality

Abstract The concepts of upper and lower $p$-estimates, where $1 < p < \infty$, play an important role when studying the geometry of Banach spaces. We introduce an analogue of upper $p$-estimate, in the case $p = \infty$, and obtain some results that make the task of finding equivalent polyhedral norms on certain Banach spaces, having either a Schauder basis or an unconditional basis, easier and more transparent.

C. Boyd .