
MA342A (Harmonic Analysis 1) Tutorial/exercise sheet 8
[due December 13, 2017]

Name: Solutions

1. Let F ∈ L2(T). For N ∈ N, show

N∑
n=−N

|F̂ (n)|2 ≤ ‖F‖22.

Deduce that
∞∑

n=−∞

|F̂ (n)|2 ≤ ‖F‖22.

[Hint: see the proof for F ∈ C(T).]

Solution: The proof in the notes of Bessel’s inequality (Proposition 2.1.2) was given for
F ∈ C(T) but the same proof works for F ∈ L2(T).

2. Could there be F ∈ L2(T) such that F̂ (n) = 1/
√
n for n ≥ 1 and F̂ (n) = 0 for n ≤ 0?

Solution: No because if there was such F , then

∞∑
n=−∞

|F̂ (n)|2 =
∞∑

n=−∞

1

n
=∞

and that would violate the second inequality in Q1.

3. Could there be F ∈ L1(T) such that F̂ (n) = (−1)n for each n ∈ Z?

Solution: No because that would violate the Riemann Lebesgue Lemma (Corollary 2.6.9
in the notes).

4. Show that there is F ∈ C(T) with F̂ (n) = 1/2n for n ≥ 1 and F̂ (n) = 0 for n ≤ 0.

Solution: We consider the sum

F (ζ) =
∞∑
n=1

1

2n
ζn

for ζ ∈ T. As explained in the proof of Theorem 2.6.2 in the notes, this series is uniformly
convergent for ζ ∈ T and so defines F ∈ C(T).

We could invoke the Weierstrass M -test to show this or use a bare hands proof as in
the proof of Theorem 2.6.2. The Weierstrass M -test says that if fn : X → C are func-
tions on a set X and there exist Mn ≥ 0 such that supx∈X |fn(x)| ≤ Mn for each n
and

∑∞
n=1Mn < ∞, then

∑∞
n=1 fn(x) converges uniformly on X (meaning that f(x) =



limN→∞
∑N

n=1 fn(x) exists for each x ∈ X and the limit is uniform in the sense that given
ε > 0 there is N0 such that

N ≥ N0 ⇒

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣ < ε (∀x ∈ X).

(The uniformity is that the the same N0 works for all x ∈ X at the same time.) One usual
consequence of the M -test if that if we assume X is a topological space (as X = T is in
our problmem) and that each fn is continuous, then f must be continuous as a uniform
limit of continuous functions. Also, if it makes sense to integrate over X we can integrate
f by exchanging the order of the sum and the integral.

Instead of using the M -test stuff, we could follow the model used in the proof of Theorem
2.6.2. For ζ ∈ T,

∞∑
n=1

∣∣∣∣ 1

2n
ζn
∣∣∣∣ =

∞∑
n=1

1

2n
= 1 <∞

and so the series
∑∞

n=1
1
2n
ζn is absolutely convergent, hence convergent. It makes sense

then to define F (ζ) as we did above. To show uniform convergence, take ε > 0 and choose
N0 large enough that

∑∞
n=N0+1 1/2n < ε. Then for N ≥ N0 we have∣∣∣∣∣F (ζ)−

N∑
n=1

1

2n
ζn

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

1

2n
ζn

∣∣∣∣∣ ≤
∞∑

n=N+1

1

2n
≤

∞∑
n=N0+1

1

2n
< ε.

That established uniform convergence of the partial sums
∑N

n=1
1
2n
ζn to F (ζ). As the

partical sums are continuous on T, we have F ∈ C(T).

Finally we claim that F̂ (n) = 1/2n for n ≥ 0 and F̂ (n) = 0 for n ≤ 0.

F̂ (n) =

∫
T
F (ζ)ζ−n dλ(ζ)

=

∫
T

(
lim
N→∞

N∑
m=1

1

2m
ζm

)
ζ−n dλ(ζ)

=

∫
T

lim
N→∞

N∑
m=1

1

2m
ζm−n dλ(ζ)

= lim
N→∞

N∑
m=1

1

2m

∫
T
ζm−n dλ(ζ)

(where I am using λ for normalised arc length measure on T). The last step is justified
by uniform convergence of the series. We know

∫
T ζ

m−n dλ(ζ) = 0 if m 6= n and is 1 if
m = n. So if n ≤ 0 we always get 0 but of n ≥ 1 we pick up one nonzero contribution of
1/2n once N ≥ n. Hence the Fourier coefficients F̂ (n) are as claimed.
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5. For F ∈ L1(T), let σNF = (1/N)(S0F+S1F + S2F + · · ·+ SN−1F ). (Note1.) Compute
VNF = 2σ2NF − σNF in terms of the Fourier coefficients of F .

Show that limN→∞ ‖VNF − F‖1 = 0 (for F ∈ L1(T)).

Solution: We know

SNF (ζ) =
N∑

n=−N

F̂ (n)ζn, σNF (ζ) =
N∑

n=−N

(̂1− |n|/N)F (n)ζn,

and so

VNF (ζ) = 2σ2NF (ζ)− σNF (ζ)

= 2
2N∑

n=−2N

(̂1− |n|/(2N))F (n)ζn −
N∑

n=−N

(̂1− |n|/N)F (n)ζn

=
N∑

n=−N

(̂2− |n|/N − 1 + |n|/N)F (n)ζn +
∑

N<|n|<2N

2(1− |n|/(2N))F (n)ζn

=
N∑

n=−N

F̂ (n)ζn +
∑

N<|n|<2N

2(1− |n|/(2N))F (n)ζn

We also know from Fejér’s theorem (Corollay 2.6.1) applied to the case B = L1(T) that

lim
N→∞

‖F − σNF‖1 = 0.

It follows of course that limN→∞ ‖F − σ2NF‖1 = 0 and so

lim
N→∞

‖VNF − F‖1 = lim
N→∞

‖2σ2NF − 2F − σNF + F‖1
= lim

N→∞
‖2(σ2NF − F )− (σNF − F )‖1

≤ lim
N→∞

2‖σ2NF − F‖1 + ‖σNF − F‖1 = 0

6. Find the Cesàro sum of
∑∞

n=0 z
n for z ∈ C, |z| < 1.

Solution: For z 6= 1 fixed, the partial sums are

sn

n∑
j=0

zj =
1− zn+1

(
1− z)

(Geometric sum formula a + ar + · · · + arn−1 = a(1 − rn)(1 − r) valid if r 6= 1.) One
could argue that s0 is the first partial sum.

1There should be the S0F term to make this consistent with the notation in the notes. 8/12/207

3



Then, the Cesàro sums are

σn =
1

n
(s0 + s1 + · · ·+ sn−1)

=
1

n

n−1∑
j=0

1− zj

1− z

=
1

n(1− z)

(
n− 1− zn

1− z

)
=

1

1− z
− 1− zn

n(1− z)2

If |z| = 1 (and we are already exclduing z = 1) the zn term has modulus 1 and so the limit
is limn→∞ σn = 1/(1− z).

That is the Cesàro sum of the series (but it is not a convergent series because zn 6→ 0 as
n→∞.

If we look at the case z = 1, we find that sn = n+1 and σn = 1
n

∑n−1
j=0 sj = 1

n

∑n−1
j=0 j+1 =

1
n

∑n
k=1 k = 1

n
n(n+1)

2
= (n+ 1)/2→∞.

(The formula
∑n

k=1 k = n(n+1)
2

is a well-known one that can be established by induction.
If you did not know it you could argue using the fact that sj > n/2 for about half the values
of j, those with j > n/2, and then that will give σn bigger than about 1

n
(n/2)2. To make

that watertight you would need to account for things a little more carefully, depending on
n even or odd and stuff.)

7. Let G = R. What is Haar measure λR? Show that the characteristic function of the unit
interval [0, 1] is in L1(R) and compute its Fourier transform.

Solution: Haar measure λR is usually taken to be just Lebesgue length measure (though
the definition allows any positive multiple of that measure).

The characteristic function χ[0,1] is certainly in L1(R) because it is measurable and has
integral (of its absolute value)

∫
R |χ[0,1]| dx = 1.

It’s Fourier transform is

χ̂[0,1](ξ) =

∫
R
χ[0,1](x)e−2πixξ dx =

∫ 1

0

e−2πixξ dx =

[
e−2πixξ

−2πiξ

]1
x=0

=
1− e−2πiξ

2πiξ

(for ξ ∈ R).

8. For G = Z, what is Haar measure λZ? What does it mean for F,H : Z → C to be equal
almost everywhere? How is the Fourier transform of F ∈ L1(Z, λZ) defined?

Solution: Haar measure λZ is counting measure (usually taken as that).

The only subset of Z with counting measure zero is the empty set. So F (n) = H(n)
almost everywhere means λZ({n : F (n) 6= H(n)}) = 0 or F (n) = H(n) everywhere (for
all n ∈ Z).
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The characters of Z are in one to one correspondence with elements ζ ∈ T or all the
characters are of the form χζ(n) = ζn, where ζ = χζ(1). The Fourier transform of
F ∈ L1(Z, λZ) is

F̂ (χζ) = F̂ (ζ) =

∫
Z
F (n)ζn dλZ(n) =

∞∑
n=−∞

F (n)ζ̄n

9. For G = Z, find an exhaustion Z =
⋃∞
n=1Kn of Z by compact sets.

Solution: We could take Kn = {−n,−n+ 1, . . . , n− 1, n} = {j ∈ Z : |j| ≤ n}. The Kn

are compact (since finite), have union Z and Kn ⊂ K◦n+1 = Kn+1 (as Z has the discrete
topology where all subsets are open).

For the distance function dn : Ẑ× Ẑ→ [0,∞) given by

dn(χ1, χ2) = sup
g∈Kn

|χ1(g)− χ2(g)|

find χ ∈ Ẑ with dn(χ, 1) = 0 but χ 6= 1. [Hint: Ẑ is given in Proposition 1.3.11 (iii). Here
1 stands for the trivial character, which could also be written χ0, χ0(n) = 1 for all n ∈ Z.]

Solution: There is no such χ as soon as 1 ∈ Kn because if 1 ∈ Kn, then dn(χ, 1) = 0
implies |χ(1)− 1| = 0⇒ χ(1) = 1⇒ χ(n) = χ(1)n = 1 for all n. So χ = 1.

Richard M. Timoney
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