Name: Solutions

1. Let $F \in L^2(\mathbb{T})$. For $N \in \mathbb{N}$, show

$$\sum_{n=-N}^{N} |\hat{F}(n)|^2 \le ||F||_2^2.$$

Deduce that

$$\sum_{n=-\infty}^{\infty} |\hat{F}(n)|^2 \le ||F||_2^2$$

[Hint: see the proof for $F \in C(\mathbb{T})$.]

Solution: The proof in the notes of Bessel's inequality (Proposition 2.1.2) was given for $F \in C(\mathbb{T})$ but the same proof works for $F \in L^2(\mathbb{T})$.

2. Could there be $F \in L^2(\mathbb{T})$ such that $\hat{F}(n) = 1/\sqrt{n}$ for $n \ge 1$ and $\hat{F}(n) = 0$ for $n \le 0$? Solution: No because if there was such F, then

$$\sum_{n=-\infty}^{\infty} |\hat{F}(n)|^2 = \sum_{n=-\infty}^{\infty} \frac{1}{n} = \infty$$

and that would violate the second inequality in Q1.

- Could there be F ∈ L¹(T) such that F̂(n) = (-1)ⁿ for each n ∈ Z?
 Solution: No because that would violate the Riemann Lebesgue Lemma (Corollary 2.6.9 in the notes).
- 4. Show that there is F ∈ C(T) with Â(n) = 1/2ⁿ for n ≥ 1 and Â(n) = 0 for n ≤ 0.
 Solution: We consider the sum

$$F(\zeta) = \sum_{n=1}^{\infty} \frac{1}{2^n} \zeta^n$$

for $\zeta \in \mathbb{T}$. As explained in the proof of Theorem 2.6.2 in the notes, this series is uniformly convergent for $\zeta \in \mathbb{T}$ and so defines $F \in C(\mathbb{T})$.

We could invoke the Weierstrass M-test to show this or use a bare hands proof as in the proof of Theorem 2.6.2. The Weierstrass M-test says that if $f_n: X \to \mathbb{C}$ are functions on a set X and there exist $M_n \ge 0$ such that $\sup_{x \in X} |f_n(x)| \le M_n$ for each nand $\sum_{n=1}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on X (meaning that f(x) = $\lim_{N\to\infty}\sum_{n=1}^N f_n(x)$ exists for each $x \in X$ and the limit is uniform in the sense that given $\varepsilon > 0$ there is N_0 such that

$$N \ge N_0 \Rightarrow \left| f(x) - \sum_{n=1}^N f_n(x) \right| < \varepsilon \quad (\forall x \in X).$$

(The uniformity is that the the same N_0 works for all $x \in X$ at the same time.) One usual consequence of the *M*-test if that if we assume *X* is a topological space (as $X = \mathbb{T}$ is in our problem) and that each f_n is continuous, then *f* must be continuous as a uniform limit of continuous functions. Also, if it makes sense to integrate over *X* we can integrate *f* by exchanging the order of the sum and the integral.

Instead of using the *M*-test stuff, we could follow the model used in the proof of Theorem 2.6.2. For $\zeta \in \mathbb{T}$,

$$\sum_{n=1}^{\infty} \left| \frac{1}{2^n} \zeta^n \right| = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1 < \infty$$

and so the series $\sum_{n=1}^{\infty} \frac{1}{2^n} \zeta^n$ is absolutely convergent, hence convergent. It makes sense then to define $F(\zeta)$ as we did above. To show uniform convergence, take $\varepsilon > 0$ and choose N_0 large enough that $\sum_{n=N_0+1}^{\infty} 1/2^n < \varepsilon$. Then for $N \ge N_0$ we have

$$\left| F(\zeta) - \sum_{n=1}^{N} \frac{1}{2^n} \zeta^n \right| = \left| \sum_{n=N+1}^{\infty} \frac{1}{2^n} \zeta^n \right| \le \sum_{n=N+1}^{\infty} \frac{1}{2^n} \le \sum_{n=N_0+1}^{\infty} \frac{1}{2^n} < \varepsilon.$$

That established uniform convergence of the partial sums $\sum_{n=1}^{N} \frac{1}{2^n} \zeta^n$ to $F(\zeta)$. As the partical sums are continuous on \mathbb{T} , we have $F \in C(\mathbb{T})$.

Finally we claim that $\hat{F}(n) = 1/2^n$ for $n \ge 0$ and $\hat{F}(n) = 0$ for $n \le 0$.

$$\begin{split} \hat{F}(n) &= \int_{\mathbb{T}} F(\zeta) \zeta^{-n} \, d\lambda(\zeta) \\ &= \int_{\mathbb{T}} \left(\lim_{N \to \infty} \sum_{m=1}^{N} \frac{1}{2^m} \zeta^m \right) \zeta^{-n} \, d\lambda(\zeta) \\ &= \int_{\mathbb{T}} \lim_{N \to \infty} \sum_{m=1}^{N} \frac{1}{2^m} \zeta^{m-n} \, d\lambda(\zeta) \\ &= \lim_{N \to \infty} \sum_{m=1}^{N} \frac{1}{2^m} \int_{\mathbb{T}} \zeta^{m-n} \, d\lambda(\zeta) \end{split}$$

(where I am using λ for normalised arc length measure on T). The last step is justified by uniform convergence of the series. We know $\int_{\mathbb{T}} \zeta^{m-n} d\lambda(\zeta) = 0$ if $m \neq n$ and is 1 if m = n. So if $n \leq 0$ we always get 0 but of $n \geq 1$ we pick up one nonzero contribution of $1/2^n$ once $N \geq n$. Hence the Fourier coefficients $\hat{F}(n)$ are as claimed. 5. For F ∈ L¹(T), let σ_NF = (1/N)(S₀F+S₁F + S₂F + · · · + S_{N-1}F). (Note¹.) Compute V_NF = 2σ_{2N}F − σ_NF in terms of the Fourier coefficients of F.
Show that lim_{N→∞} ||V_NF − F||₁ = 0 (for F ∈ L¹(T)).
Solution: We know

$$S_N F(\zeta) = \sum_{n=-N}^{N} \hat{F}(n)\zeta^n, \quad \sigma_N F(\zeta) = \sum_{n=-N}^{N} (1 - |n|/N)F(n)\zeta^n,$$

and so

$$\begin{aligned} V_N F(\zeta) &= 2\sigma_{2N} F(\zeta) - \sigma_N F(\zeta) \\ &= 2\sum_{n=-2N}^{2N} (1 - |n|/(2N)) F(n) \zeta^n - \sum_{n=-N}^N (1 - |n|/N) F(n) \zeta^n \\ &= \sum_{n=-N}^N (2 - |n|/N - 1 + |n|/N) F(n) \zeta^n + \sum_{N < |n| < 2N} 2(1 - |n|/(2N)) F(n) \zeta^n \\ &= \sum_{n=-N}^N \hat{F}(n) \zeta^n + \sum_{N < |n| < 2N} 2(1 - |n|/(2N)) F(n) \zeta^n \end{aligned}$$

We also know from Fejér's theorem (Corollay 2.6.1) applied to the case $B = L^1(\mathbb{T})$ that

$$\lim_{N \to \infty} \|F - \sigma_N F\|_1 = 0.$$

It follows of course that $\lim_{N\to\infty} ||F - \sigma_{2N}F||_1 = 0$ and so

$$\lim_{N \to \infty} \|V_N F - F\|_1 = \lim_{N \to \infty} \|2\sigma_{2N} F - 2F - \sigma_N F + F\|_1$$

=
$$\lim_{N \to \infty} \|2(\sigma_{2N} F - F) - (\sigma_N F - F)\|_1$$

$$\leq \lim_{N \to \infty} 2\|\sigma_{2N} F - F\|_1 + \|\sigma_N F - F\|_1 = 0$$

6. Find the Cesàro sum of $\sum_{n=0}^{\infty} z^n$ for $z \in \mathbb{C}$, |z| < 1.

Solution: For $z \neq 1$ fixed, the partial sums are

$$s_n \sum_{j=0}^n z^j = \frac{1-z^{n+1}}{(1-z)}$$

(Geometric sum formula $a + ar + \cdots + ar^{n-1} = a(1 - r^n)(1 - r)$ valid if $r \neq 1$.) One could argue that s_0 is the first partial sum.

¹There should be the S_0F term to make this consistent with the notation in the notes. 8/12/207

Then, the Cesàro sums are

$$\sigma_n = \frac{1}{n} (s_0 + s_1 + \dots + s_{n-1})$$

= $\frac{1}{n} \sum_{j=0}^{n-1} \frac{1-z^j}{1-z}$
= $\frac{1}{n(1-z)} \left(n - \frac{1-z^n}{1-z} \right)$
= $\frac{1}{1-z} - \frac{1-z^n}{n(1-z)^2}$

If |z| = 1 (and we are already excluding z = 1) the z^n term has modulus 1 and so the limit is $\lim_{n\to\infty} \sigma_n = 1/(1-z)$.

That is the Cesàro sum of the series (but it is not a convergent series because $z^n \not\to 0$ as $n \to \infty$.

If we look at the case z = 1, we find that $s_n = n+1$ and $\sigma_n = \frac{1}{n} \sum_{j=0}^{n-1} s_j = \frac{1}{n} \sum_{j=0}^{n-1} j+1 = \frac{1}{n} \sum_{k=1}^n k = \frac{1}{n} \frac{n(n+1)}{2} = (n+1)/2 \to \infty$.

(The formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ is a well-known one that can be established by induction. If you did not know it you could argue using the fact that $s_j > n/2$ for about half the values of j, those with j > n/2, and then that will give σ_n bigger than about $\frac{1}{n}(n/2)^2$. To make that watertight you would need to account for things a little more carefully, depending on n even or odd and stuff.)

7. Let $G = \mathbb{R}$. What is Haar measure $\lambda_{\mathbb{R}}$? Show that the characteristic function of the unit interval [0, 1] is in $L^1(\mathbb{R})$ and compute its Fourier transform.

Solution: Haar measure $\lambda_{\mathbb{R}}$ is usually taken to be just Lebesgue length measure (though the definition allows any positive multiple of that measure).

The characteristic function $\chi_{[0,1]}$ is certainly in $L^1(\mathbb{R})$ because it is measurable and has integral (of its absolute value) $\int_{\mathbb{R}} |\chi_{[0,1]}| dx = 1$.

It's Fourier transform is

$$\widehat{\chi_{[0,1]}}(\xi) = \int_{\mathbb{R}} \chi_{[0,1]}(x) e^{-2\pi i x \xi} \, dx = \int_0^1 e^{-2\pi i x \xi} \, dx = \left[\frac{e^{-2\pi i x \xi}}{-2\pi i \xi}\right]_{x=0}^1 = \frac{1 - e^{-2\pi i \xi}}{2\pi i \xi}$$

(for
$$\xi \in \mathbb{R}$$
).

8. For $G = \mathbb{Z}$, what is Haar measure $\lambda_{\mathbb{Z}}$? What does it mean for $F, H : \mathbb{Z} \to \mathbb{C}$ to be equal almost everywhere? How is the Fourier transform of $F \in L^1(\mathbb{Z}, \lambda_{\mathbb{Z}})$ defined?

Solution: Haar measure $\lambda_{\mathbb{Z}}$ is counting measure (usually taken as that).

The only subset of \mathbb{Z} with counting measure zero is the empty set. So F(n) = H(n) almost everywhere means $\lambda_{\mathbb{Z}}(\{n : F(n) \neq H(n)\}) = 0$ or F(n) = H(n) everywhere (for all $n \in \mathbb{Z}$).

The characters of \mathbb{Z} are in one to one correspondence with elements $\zeta \in \mathbb{T}$ or all the characters are of the form $\chi_{\zeta}(n) = \zeta^n$, where $\zeta = \chi_{\zeta}(1)$. The Fourier transform of $F \in L^1(\mathbb{Z}, \lambda_{\mathbb{Z}})$ is

$$\hat{F}(\chi_{\zeta}) = \hat{F}(\zeta) = \int_{\mathbb{Z}} F(n)\overline{\zeta^n} \, d\lambda_{\mathbb{Z}}(n) = \sum_{n=-\infty}^{\infty} F(n)\overline{\zeta^n}$$

9. For $G = \mathbb{Z}$, find an exhaustion $\mathbb{Z} = \bigcup_{n=1}^{\infty} K_n$ of \mathbb{Z} by compact sets.

Solution: We could take $K_n = \{-n, -n+1, \dots, n-1, n\} = \{j \in \mathbb{Z} : |j| \le n\}$. The K_n are compact (since finite), have union \mathbb{Z} and $K_n \subset K_{n+1}^{\circ} = K_{n+1}$ (as \mathbb{Z} has the discrete topology where all subsets are open).

For the distance function $d_n \colon \hat{\mathbb{Z}} \times \hat{\mathbb{Z}} \to [0, \infty)$ given by

$$d_n(\chi_1, \chi_2) = \sup_{g \in K_n} |\chi_1(g) - \chi_2(g)|$$

find $\chi \in \hat{\mathbb{Z}}$ with $d_n(\chi, 1) = 0$ but $\chi \neq 1$. [Hint: $\hat{\mathbb{Z}}$ is given in Proposition 1.3.11 (iii). Here 1 stands for the trivial character, which could also be written $\chi_0, \chi_0(n) = 1$ for all $n \in \mathbb{Z}$.] Solution: There is no such χ as soon as $1 \in K_n$ because if $1 \in K_n$, then $d_n(\chi, 1) = 0$ implies $|\chi(1) - 1| = 0 \Rightarrow \chi(1) = 1 \Rightarrow \chi(n) = \chi(1)^n = 1$ for all n. So $\chi = 1$.

Richard M. Timoney