Name:

Student ID:

1. Let $F \in L^2(\mathbb{T})$. For $N \in \mathbb{N}$, show

$$\sum_{n=-N}^{N} |\hat{F}(n)|^2 \le \|F\|_2^2.$$

Deduce that

$$\sum_{n=-\infty}^{\infty} |\hat{F}(n)|^2 \le \|F\|_2^2.$$

[Hint: see the proof for $F \in C(\mathbb{T})$.]

- 2. Could there be $F \in L^2(\mathbb{T})$ such that $\hat{F}(n) = 1/\sqrt{n}$ for $n \ge 1$ and $\hat{F}(n) = 0$ for $n \le 0$?
- 3. Could there be $F \in L^1(\mathbb{T})$ such that $\hat{F}(n) = (-1)^n$ for each $n \in \mathbb{Z}$?
- 4. Show that there is $F \in C(\mathbb{T})$ with $\hat{F}(n) = 1/2^n$ for $n \ge 1$ and $\hat{F}(n) = 0$ for $n \le 0$.
- 5. For $F \in L^1(\mathbb{T})$, let $\sigma_N F = (1/N)(S_0F + S_1F + S_2F + \dots + S_{N-1}F)$. Note¹. Compute $V_N F = 2\sigma_{2N}F \sigma_N F$ in terms of the Fourier coefficients of F. Show that $\lim_{N\to\infty} ||V_NF - F||_1 = 0$ (for $F \in L^1(\mathbb{T})$).
- 6. Find the Cesàro sum of $\sum_{n=0}^{\infty} z^n$ for $z \in \mathbb{C}$, |z| < 1.
- 7. Find the Cesàro sum of $\sum_{n=0}^{\infty} z^n$ for $z \in \mathbb{C}$, |z| = 1, $z \neq 1$. Show also that for z = 1, the series $\sum_{n=0}^{\infty} z^n$ is not Cesàro summable (to a finite sum).
- 8. Let $G = \mathbb{R}$. What is Haar measure $\lambda_{\mathbb{R}}$? Show that the characteristic function of the unit interval [0, 1] is in $L^1(\mathbb{R})$ and compute its Fourier transform.
- 9. For $G = \mathbb{Z}$, what is Haar measure $\lambda_{\mathbb{Z}}$? What does it mean for $F, H : \mathbb{Z} \to \mathbb{C}$ to be equal almost everywhere? How is the Fourier transform of $F \in L^1(\mathbb{Z}, \lambda_{\mathbb{Z}})$ defined?
- 10. For $G = \mathbb{Z}$, find an exhaustion $\mathbb{Z} = \bigcup_{n=1}^{\infty} K_n$ of \mathbb{Z} by compact sets. For the distance function $d_n \colon \hat{\mathbb{Z}} \times \hat{\mathbb{Z}} \to [0, \infty)$ given by

$$d_n(\chi_1, \chi_2) = \sup_{g \in K_n} |\chi_1(g) - \chi_2(g)|$$

find $\chi \in \hat{\mathbb{Z}}$ with $d_n(\chi, 1) = 0$ but $\chi \neq 1$. [Hint: $\hat{\mathbb{Z}}$ is given in Proposition 1.3.11 (iii). Here 1 stands for the trivial character, which could also be written $\chi_0, \chi_0(n) = 1$ for all $n \in \mathbb{Z}$.]

Please hand in your work at the 5-6pm slot.

Richard M. Timoney

¹There should be the S_0F term to make this consistent with the notation in the notes. 8/12/207