MA342A (Harmonic Analysis 1) Tutorial sheet 7 [November 22, 2017]

Name: Solutions

1. Show that $F \in L^2(\mathbb{T})$, $\phi \in C(\mathbb{T})$ implies $\phi * F \in L^2(\mathbb{T})$. [Hint: Combine two results we have covered.]

Solution: We want to apply Proposition 2.4.7 in the notes with $B = L^2(\mathbb{T})$ but we need the facts that $L^2(\mathbb{T})$ is a homogeneous space of functions, that $C(\mathbb{T})$ is densely contained in $L^2(\mathbb{T})$ and that $||F||_2 \leq ||F||_{\infty}$ for $F \in C(\mathbb{T})$. Corollary A.3.7 (in chapter 2) says that $C(\mathbb{T})$ is densely contained in $L^2(\mathbb{T})$, Examples 2.4.2 (iii) outlines that $L^2(\mathbb{T})$ is a homogeneous space.

It remains to check that $||F||_2 \leq ||F||_\infty$ for $F \in C(\mathbb{T})$ and this is because

$$||F||_{2}^{2} = \int_{0}^{1} |F(e^{2\pi ix})|^{2} dx \le \int_{0}^{1} ||F||_{\infty}^{2} dx = ||F||_{\infty}^{2}.$$

2. Show that $L^2(\mathbb{T}) \subseteq L^1(\mathbb{T})$.

Solution: This is included in Examples 2.4.2 (iii). Starting with an $F \in L^2(\mathbb{T})$, and using the Cauchy-Schwarz inequality for $|F| \in L^2(\mathbb{T})$ together with the constant function 1 (which has $||1||_2 = \sqrt{\int_0^1 1^2 dx} = 1$), we get

$$\langle |F|,1\rangle \le ||F|||_2 ||1||_2 = ||F||_2 1 \Rightarrow ||F||_1 = \int_0^1 |F(e^{2\pi ix})| \, dx = \langle |F|,1\rangle \le ||F||_2.$$

3. Suppose $f_t \in C(\mathbb{T})$ for each $t \in [0,1]$ and that the map $t \mapsto f_t$ from [0,1] to $C(\mathbb{T})$ is continuous. Show that the value at $\zeta \in \mathbb{T}$ of $\int_0^1 f_t dt \in C(\mathbb{T})$ is $\int_0^1 f_t(\zeta) dt$

Solution: The idea here is that for $\zeta \in \mathbb{T}$, the point evaluation functional $T_{\zeta} : C(\mathbb{T}) \to \mathbb{C}$ given by the rule $T_{\zeta}(F) = F(\zeta)$ is a continuous linear functional. (See the proof of Proposition 2.4.6 in the notes.)

[It is clear that $T_{\zeta}(F)$ is well-defined for $F \in C(\mathbb{T})$ and easy to see that it is linear — if $F, H \in C(\mathbb{T})$ and $\lambda \in \mathbb{C}$, then $T_{\zeta}(F + \lambda H) = (F + \lambda H)(\zeta) = F(\zeta) + \lambda H(\zeta) = T_{\zeta}(F) + \lambda T_{\zeta}(H)$. This is using the definition of the vector space operations on functions and it shows linearity. Next for $F, H \in C(\mathbb{T})$ we can see that $|T_{\zeta}(F) - T_{\zeta}(H)| = |T_{\zeta}(F - H)| = |(F - H)(\zeta)| \leq ||F - H||_{\infty}$ and that is enough to show that T_{ζ} is (uniformly) continuous — given $\varepsilon > 0, \delta = \varepsilon$ with satisfy

$$||F - H||_{\infty} < \delta \Rightarrow |T_{\zeta}(F) - T_{\zeta}(H)| < \varepsilon.]$$

Then there is Lemma 2.4.5 which allows us to conclude that

$$T_{\zeta}\left(\int_0^1 f_t \, dt\right) = \int_0^1 T_{\zeta}(f_t) \, dt = \int_0^1 f_t(\zeta) \, dt.$$

Richard M. Timoney