Name: Solutions

 By definition an action of a group G on a set X is a map φ: G × X → X such that φ(1_G, x) = x (for all x ∈ X) and φ(g₁g₂, x) = φ(g₁, φ(g₂, x)) (for all g₁, g₁ ∈ G, x ∈ X). [Here the group operation is written multiplicatively, 1_G ∈ G means the identity element. It can be helpful to think of φ(g, x) as g ⋅ x but that could well be confusing below.]

Consider the map $\phi \colon \mathbb{T} \times C(\mathbb{T}) \to C(\mathbb{T})$ given by $\phi(\eta, F) = F_{\eta}$ (the translate of F by η). Show that this defines an action.

Solution: For $G = \mathbb{T}$, we have $1_G = 1$ and, for $F \in C(\mathbb{T})$, $F_1(\zeta) = F(\zeta/1) = F(\zeta)(\forall \zeta \in \mathbb{T}) \Rightarrow F_1 = F \Rightarrow \phi(1, F) = F$.

Next, if $\eta_1, \eta_2 \in \mathbb{T}$ and $F \in C(\mathbb{T})$, we want to verify that $\phi(\eta_1\eta_2, F) = \phi(\eta_1, \phi(\eta_2, F))$. Translating, we want $F_{\eta_1\eta_2} = (F_{\eta_2})_{\eta_1}$. For $\zeta \in \mathbb{T}$, we have

$$F_{\eta_1\eta_2}(\zeta) = F(\zeta(\eta_1\eta_2)^{-1}) = F\left(\frac{\zeta}{\eta_1\eta_2}\right)$$

and

$$(F_{\eta_2})_{\eta_1}(\zeta) = (F_{\eta_2})(\zeta\eta_1^{-1}) = F(\zeta\eta_1^{-1}\eta_2^{-1}) = F\left(\frac{\zeta}{\eta_1\eta_2}\right).$$

Hence result.

2. For $F(\zeta) = 1/(2 - \zeta^2)$, compute F_i , $(F_i)_i$, F_{-1} and F_{-i} . Solution:

$$F_{i}(\zeta) = F(\zeta/i) = \frac{1}{2 - (\zeta/i)^{2}} = \frac{1}{2 - \zeta^{2}/i^{2}} = \frac{1}{2 + \zeta^{2}}$$
$$(F_{i})_{i}(\zeta) = F_{i}(\zeta/i) = \frac{1}{2 + (\zeta/i)^{2}} = \frac{1}{2 + \zeta^{2}/i^{2}} = \frac{1}{2 - \zeta^{2}} = F(\zeta)$$
$$F_{-1} = F_{i^{2}} = (F_{i})_{i} = F$$

$$F_{-i} = F_{(-1)i} = (F_{-1})_i = F_i \Rightarrow F_{-i}(\zeta) = \frac{1}{2+\zeta^2}$$

3. Show that $C(\mathbb{T}) \subseteq L^1(\mathbb{T})$ (that is $F \in C(\mathbb{T}) \Rightarrow F \in L^1(\mathbb{T})$, treating F as an equivalence class) and that $||F||_1 \leq ||F||_{\infty}$ (for $F \in C(\mathbb{T})$).

Solution: If we use the definition of $\mathcal{L}^1(\mathbb{T})$ as those $F \colon \mathbb{T} \to \mathbb{C}$ such that $f(x) = F(e^{2\pi i x})$ gives $f \in \mathcal{L}^1[0, 1]$ (see Remark 1.3.17 in the notes), then we can say

F continuous \Rightarrow f continuous (on [0, 1]) \Rightarrow f integrable.

(The reasons are that f continuous implies that its real and imaginary parts are continuous and hence both measurable. Also |f| is continuous on [0, 1] so that the Lebesgue integral $\int_{[0,1]} |f(x)| dx$ agrees with the Riemann integral and is finite.)

The passage from $\mathcal{L}^1(\mathbb{T})$ to $L^1(\mathbb{T})$ (or, equivalently from $\mathcal{L}^1[0,1]$ to $L^1[0,1]$) is just replacing measurable functions by their almost everywhere equivalence classes.

For $F \in C(\mathbb{T})$ we have the corresponding $f \in CP[0, 1]$ and

$$||F||_{\infty} = \sup_{\zeta \in \mathbb{T}} |F(\zeta)| = \sup_{x \in [0,1]} |F(e^{2\pi i x})| = \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}$$

Also $|f(x)| \le ||f||_{\infty} = ||F||_{\infty}$ for all $x \in [0, 1]$ and so

$$||F||_1 = ||f||_1 = \int_{[0,1]} |f(x)| \, dx \le \int_{[0,1]} ||F||_{\infty} \, dx = ||F||_{\infty}.$$

Richard M. Timoney