
MA342A (Harmonic Analysis 1) Tutorial sheet 4
[October 25, 2017]

Name: Solutions

1. Let G = Z5 (the cyclic group of order 5) and let f : G→ C be the function given by

f(n) =

{
1 if n = 0

0 otherwise

(where we take the elements of Z5 to be 0, 1, 2, 3, 4). Calculate f̂ : Ĝ→ C.

Solution: If we take ζ = e2πi/5 then we know that the characters ofG are χj : G = Z5 → T
given by

χj(n) = ζjn

(n = 0, 1, 2, 3, 4 and j = 0, 1, 2, 3, 4). The formula for f̂ : Ĝ→ C is

f̂(χ) =
1√
5

∑
g∈Z5

f(g)χ(g) =
1√
5

4∑
n=0

f(n)χ(n) =
1√
5
f(0)χ(0) + 0 =

1√
5
.

So f̂ is the constant function 1/
√
5.

2. Consider f : R→ C given by f(x) = e−|x|. Compute f̂ : R→ C.

Solution: By definition

f̂(t) =

∫
R
f(x)e−2πixt dx (t ∈ R)

(or, maybe more correctly, that gives f̂(χt) where χt ∈ R̂ is given by χt(x) = e2πixt).

Now we can use the dominated convergence theorem to show that

f̂(t) = lim
N→∞

∫
[−N,N ]

f(x)e−2πixt dx

by taking fN(x) = χ[−N,N ]f(x)e
−2πixt (here χ[−N,N ] is the characteristic function of the

intervale [−N,N ]) and as dominating function f(x) = e−|x|.

[In more detail, we certainly have limN→∞ fN(x) = f(x)e−2πixt for each x ∈ R, because
fN(x) = f(x)e−2πixt once N is fig enough that N ≥ |x|. The functions involved are
all measurable (as they are built from continuous functions and measurable characteristic



functions. To show that f is integrable we can use the Monotone convergence theorem to
say that ∫

R
f(x) dx = lim

N→∞

∫
[−N,N ]

f(x) dx = lim
N→∞

2

∫ N

0

e−x dx

= lim
N→∞

2[−e−x]N0 = lim
N→∞

2(−e−N + 1)

= 2 <∞.]

To calculate
∫
[−N,N ]

f(x)e−2πixt dx we can use the Riemann integral.∫
[−N,N ]

f(x)e−2πixt dx =

∫ 0

−N
f(x)e−2πixt dx+

∫ N

0

f(x)e−2πixt dx

=

∫ 0

−N
exe−2πixt dx+

∫ N

0

e−xe−2πixt dx

=

∫ 0

−N
e(1−2πit)x dx+

∫ N

0

e−(1+2πit)x dx

=

[
1

1− 2πit
e(1−2πit)x

]0
−N

+

[
−1

1 + 2πit
e−(1+2πit)x

]N
0

=
1

1− 2πit
− 1

1− 2πit
e−(1−2πit)N

+
−1

1 + 2πit
e−(1+2πit)N +

1

1 + 2πit

Now, when we take the limit as N →∞ we see that

|e−(1±2πit)N | = e−N |e∓2πit)N | = e−N =
1

eN
→ 0.

Thus

f̂(t) =
1

1− 2πit
+

1

1 + 2πit
=

(1 + 2πit) + (1− 2πit)

1 + 4π2t2
=

2

1 + 4π2t2

2



Compute
∫
R |f(x)|

2 dx and
∫
R |f̂(t)|

2 dt. [Hint:∫
1

(1 + a2t2)2
dt =

t

2(1 + a2t2)
+

1

2a
tan−1(at) + C.]

Solution: By the Monotone convergence theorem∫
R
|f(x)|2 dx = lim

N→∞

∫
[−N,N ]

e−2|x| dx

= lim
N→∞

2

∫ N

0

e−2x dx

= lim
N→∞

2

[
−1

2
e−2x

]N
0

= lim
N→∞

−e−2N + 1 = 1.

and ∫
R
|f̂(t)|2 dt = lim

N→∞

∫
[−N,N ]

4

(1 + 4π2t2)2
dt

= 4 lim
N→∞

[
t

2(1 + 4π2t2)
+

1

4π
tan−1(2πt)

]N
−N

= 4 lim
N→∞

(
N

2(1 + 4π2N2)
+

1

4π
tan−1(2πN)

− −N
2(1 + 4π2N2)

− 1

4π
tan−1(−2πN)

)
= 4

(
0 +

1

4π

π

2
− 0− 1

4π

(
−π
2

))
= 1

Remark. There is a theorem we will see later called Parseval’s theorem which implies
that it is always true that

∫
R |f(x)|

2 dx =
∫
R |f̂(t)|

2 dt, but one difficulty is to define f̂
when we know only

∫
R |f(x)|

2 dx < ∞ (and f measurable of course). So far we have
needed integrability of f , that is

∫
R |f(x)| dx < ∞ and it is neither true that integrability

is a consequence of square integrability (
∫
R |f(x)|

2 dx < ∞) nor does integrability imply
square integrability (on R).

Richard M. Timoney
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