Name: Solutions

1. For $G = \mathbb{Z}_4$ the cyclic group of order 4, make a table of all the values of (all) the characters $\chi \in \hat{G}$ with one row for each character and the group elements 0, 1, 2, 3 labelling the columns.

Solution: We write $G = \{0, 1, 2, 3\}$ with addition modulo 4.

We know that the characters are given by $\chi(1)$ which must be a 4th root of unity. That is $\chi_k(1) = e^{2\pi i k/4}$ for k = 0, 1, 2, 3.

 $e^{2\pi i/4} = i$ and so we get the values for $\chi_k(n) = (\chi_k(1))^n \ (0 \le k, n < 4)$

n	0	1	2	3
$\chi_0(n)$	1	1	1	1
$\chi_1(n)$	1	i	-1	-i
$\chi_2(n)$	1	-1	1	-1
$\chi_3(n)$	1	-i	-1	i

Then compute the sum $\sum_{\chi \in \hat{G}} \chi$ (as a \mathbb{C} -valued function on G). Solution: $\sum_{\chi \in \hat{G}} \chi(n) = 4$ if n = 0 and $\sum_{\chi \in \hat{G}} \chi(n) = 0$ for n = 1, 2, 3.

2. Let G_1 and G_2 be finite abelian groups written additively (and with their discrete topologies). Show that the cartesian product $G_1 \times G_2$ becomes an abelian group if we define the group operation via

$$(g_1, g_2) + (h_1, h_2) = (g_1 + h_1, g_2 + h_2).$$

[We write $G_1 \oplus G_2$ for this group (with the product topology, again discrete).]

Solution: We need to check the group properties:

- (G1) It is clear that + is properly defined, that is it is a map from $(G_1 \times G_2) \times (G_1 \times G_2) \rightarrow G_1 \times G_2$.
- (G2) (associative law) For $g_1, h_1, k_1 \in G_1$ and $g_2, h_2, k_2 \in G_2$, we have to verify

$$((g_1, g_2) + (h_1, h_2)) + (k_1, k_2) = (g_1, g_2) + ((h_1, h_2) + (k_1, k_2))$$

But

$$((g_1, g_2) + (h_1, h_2)) + (k_1, k_2) = ((g_1 + h_1) + k_1, (g_2 + h_2) + k_2) = (g_1 + (h_1 + k_1), g_2 + (h_2 + k_2)) = (g_1, g_2) + ((h_1, h_2) + (k_1, k_2))$$

using associativity in G_1 and G_2 .

(G3) (identity element) Using 0 for the identity elements of both G_1 and G_2 , we see that $(0,0) \in G_1 \times G_2$ satisfies

$$(g_1, g_2) + (0, 0) = (g_1 + 0, g_2 + 0) = (g_1, g_2)$$

and $(0,0) + (g_1, g_2) = (g_1, g_2)$ for each $(g_1, g_2) \in G_1 \times G_2$.

(G4) (existence of inverses) For $(g_1, g_2) \in G_1 \times G_2$, we can see that

$$(g_1, g_2) + (-g_1, -g_2) = (g_1 - g_1, g_2 - g_2) = (0, 0)$$

and $(-g_1, -g_2) + (g_1, g_2) = (0, 0)$. So $(-g_1, -g_2)$ is the inverse for (g_1, g_2) (where, of course, $-g_1$ is the additive inverse for $g_1 \in G_1$ and similarly for $-g_2 \in G_2$).

Finally we have an abelian group $G_1 \times G_2$ because

$$(g_1, g_2) + (h_1, h_2) = (g_1 + h_1, g_2 + h_2) = (h_1 + g_1, h_2 + g_2) = (h_1, h_2) + (g_1, g_2)$$

(since + is commutative on G_1 and on G_2).

For j = 1, 2, define $\pi_j \colon G_1 \oplus G_2 \to G_j$ by $\pi_j(g_1, g_2) = g_j$. Show that π_j is a group homomorphism.

Solution:

$$\pi_j((g_1, g_2) + (h_1, h_2)) = \pi_j((g_1 + h_1, g_2 + h_2)) = g_j + h_j = \pi_j(g_1, g_2) + \pi_j(h_1, h_2)$$

For j = 1, 2, suppose $\chi_j \in \hat{G}_j$. Show that $\chi_j \circ \pi_j \in \widehat{G_1 \oplus G_2}$.

Solution: We are assuming that $\chi_j: G_j \to \mathbb{T}$ is a continuous homomorphism (for j = 1, 2) but in fact continuity imposes no restriction here because G_j has the discrete topology.

 $\chi_j \circ \pi_j$ is then a composition of group homorphisms, hence a homomorphism (from $G_1 \oplus G_2$ to \mathbb{T}). As again $G_1 \oplus G_2$ has the discrete topology (it is a finite set and all metrics give it the discrete topology), $\chi_j \circ \pi_j$ is continuous. So $\chi_j \circ \pi_j \in \widehat{G_1 \oplus G_2}$.

Richard M. Timoney