Name: Solutions

1. Let G be a finite set and d a metric on G. Show that every subset of G is open (in the metric topology).

Solution: Fix $g \in G$ and consider all $h \in G \setminus \{g\}$. Then d(g,h) > 0 for all such h and there are only finitely many such h. Let $\delta_g = \min_{h \in G, h \neq g} d(g,h)$. Then $(\delta_g > 0$ and) the open ball $B(g, \delta_g)$ contains exactly one point g. So $B(g, \delta_g) = \{g\}$ is open in the metric arising from d.

As each subset is a union of the singleton subsets it contains, it follows that each $E \subset G$ is open in the *d*-topology.

2. Show that every character $\chi \colon \mathbb{Z} \to \mathbb{T}$ (of the group $(\mathbb{Z}, +)$ where \mathbb{Z} has the usual absolute value distance) is of the form

$$\chi_{\zeta}(n) = \zeta^n$$

for some $\zeta \in \mathbb{T}$.

Solution:

See notes, Proposition 1.3.11 (c).

3. Show that there is a group isomorphism $\mathbb{T} \to \hat{\mathbb{Z}}$ given by $\zeta \mapsto \chi_{\zeta}$ (with the notation above). *Solution:*

See notes, Proposition 1.3.11 (c).

4. Let G be the group \mathbb{Z}_2 of the integers modulo 2 (with addition modulo 2 as the operation). Equivalently $G = \{0, 1\}$ with addition mod 2. Find \hat{G} .

Solution: Say $\chi \colon \mathbb{Z}_2 \to \mathbb{T}$ is a character. That means χ is a group homomorphism from $(\mathbb{Z}_2, +)$ to (\mathbb{T}, \cdot) and χ is also continuous.

But we need a metric on \mathbb{Z}_2 to talk about continuity (and there is none specified in the question!). However we know from Q1 that all metrics on a finite set give the same topology, the discrete topology, where all subsets are open. (In fact defining a metric on $\{0, 1\}$ just means selecting a strictly positive distance between 0 and 1.) Since then we must give *G* the discrete topology, it follows that every function $\chi \colon \mathbb{Z}_2 \to \mathbb{T}$ is continuous. So continuity is not a worry here and we can forget it.

Now if $\chi(1) = \zeta$, then $\chi(1+1) = \chi(1)\chi(1) = \zeta^2$. But $1+1 \equiv 0 \pmod{2}$ and so we have $\chi(0) = \zeta^2$. From group theory $\chi(0) = 1$ (or we can say $\chi(0) = \chi(0+0) = \chi(0)\chi(0)$ to deduce $\chi(0) = 1$). So $\zeta = \pm 1$.

So there are just two cases, χ_1 which has values $\chi_1(0) = \chi_1(1) = 1$ (and is the identity element of \hat{G}) and χ_{-1} which has values $\chi_{-1}(0) = 1$, $\chi_{-1}(1) = -1$.

So $\hat{G} = \{\chi_{\zeta} : \zeta = \pm 1\}$ where $\chi_{\zeta}(n) = \zeta_n$ for n = 0, 1. As for \mathbb{Z} we can multiply characters via $\chi_{\zeta}\chi_{\eta} = \chi_{\zeta\eta}$. We can thus identify \hat{G} with $\{\pm 1\}$ (a subgroup of \mathbb{T} and also a cyclic group of order 2).

Richard M. Timoney