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Chapter 2: Convergence results for Fourier series
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2.1 Differentiable functions on the circle

Here we consider Fourier series of functions F ∈ C(T) but often we will parametrize the circle
by ζ = e2πix and consider the function f(x) = F (e2πix) with x ∈ R (which is periodic and has
1 as a period).

2.1.1 Definition (Partial sums). If f ∈ L1[0, 1] and N ∈ N ∪ {0}, then we call the function
SNf : R→ C given by

SNf(x) =
N∑

n=−N

f̂(n)e2πinx (x ∈ R)

the N th (symmetric) partial sum of the Fourier series of f .
If F ∈ C(T) we define SNF : T→ C similarly as

SNF (ζ) =
N∑

n=−N

F̂ (n)ζn (ζ ∈ T).

We would like to show (under suitable hypotheses, if necessary) that the partial sums of the
Fourier series converge to the function. One could also argue with the terminology as S0f is
defined (it is the constant function f̂(0)) and so perhaps we should call that the first instead of
the zeroth partial sum.
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2.1.2 Proposition (Version of Bessel’s inequality). If F ∈ C(T), then
∞∑

n=−∞

|F̂ (n)|2 ≤
∫ 1

0

|F (e2πix)|2 dx

Proof. For ease of notation, let f(x) = F (e2πix). We know F̂ (n) = f̂(n). Fix N ∈ N and let

h(x) = f(x)−
N∑

n=−N

f̂(n)e2πinx

We know that
∫ 1

0
|h(x)|2 dx ≥ 0. We expand that using

|h(x)|2 = h(x)h(x) =

(
f(x)−

N∑
n=−N

f̂(n)e2πinx

)(
f(x)−

N∑
m=−N

f̂(m)e2πimx

)
.

So

|h(x)|2 = f(x)f(x)−
N∑

m=−N

f(x)f̂(m)e−2πimx −
N∑

n=−N

f̂(n)e2πinxf(x)

+
N∑

n,m=−N

f̂(n)f(m)e2πinxe−2πimx

Integrate to get

0 ≤
∫ 1

0

|h(x)|2 dx =

∫ 1

0

|f(x)|2 dx−
N∑

m=−N

f̂(m)f̂(m)

−
N∑

n=−N

f̂(n)

∫ 1

0

f(x)e−2πinx dx

+
N∑

n,m=−N

f̂(n)f(m)

∫ 1

0

e2πinxe−2πimx dx

=

∫ 1

0

|f(x)|2 dx−
N∑

m=−N

|f̂(m)|2 −
N∑

n=−N

|f̂(n)|2

+
N∑

n=−N

|f̂(n)|2

(using orthonormality of the complex exponentials e2πinx). Hence we have
N∑

n=−N

|f̂(n)|2 ≤
∫ 1

0

|f(x)|2 dx.

Let N →∞ to complete the proof.
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2.1.3 Corollary. If F ∈ C(T), then lim|n|→∞ F̂ (n) = 0.

2.1.4 Proposition. If f : R→ C has f(x+ 1) = f(x) and f has a continuous derivative h = f ′

(on R), then

f̂(n) =
1

2πin
ĥ(n)

for n ∈ Z \ {0}.

Proof. By integration by parts

f̂(n) =

∫ 1

0

f(x) d

(
e−2πinx

−2πin

)
=

[
f(x)

e−2πinx

−2πin

]1
0

−
∫ 1

0

e−2πinx

−2πin
f ′(x) dx = 0 +

1

2πin
ĥ(n)

2.1.5 Corollary. If f : R → C has f(x + 1) = f(x) and f has a continuous derivative h = f ′

(on R), then
∞∑

n=−∞

|f̂(n)| <∞

Proof. Let h = f ′. Then h is periodic with 1 as a period and there is a corresponding H ∈ C(T)
with H(e2πix) = h(x). Applying Proposition 2.1.2, we conclude that

∑∞
n=−∞ |ĥ(n)|2 <∞.

From Proposition 2.1.4, we have f̂(n) = ĥ(n)/(2πin) for n 6= 0. It is elementary then (since
2ab ≤ a2 + b2 for a, b ≥ 0) that

|f̂(n)| = |ĥ(n)| 1

2πn
≤ 1

2

(
|ĥ(n)|2 +

1

4π2n2

)
(for n 6= 0) and so

∑
n∈Z |f̂(n)| <∞ (using

∑∞
n=1 1/n2 <∞).

While this result seems very close to showing that the Fourier series of continuously differen-
tiable (periodic) functions converge to the function, we need something more to show that result.
We will now introduce some terminology and results that will also be useful for more general
classes of functions.

2.2 More formalities
2.2.1 Definition (See Definition 1.1.4.5). A seminorm on a vector space V over K = R or K = C
is a function from V to the real numbers with the following 3 properties, where we use ‖ · ‖ for
the function:

(SN1) ‖v‖ ≥ 0 for v ∈ V

(SN2) (Triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V

(SN3) (scaling property) ‖λv‖ = |λ|‖v‖ for λ ∈ K, v ∈ V
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A seminorm is called a norm if it has the additional property that

(N4) v ∈ V, ‖v‖ = 0⇒ v = 0

2.2.2 Remark. It is perhaps unusual not to reserve the notation ‖ · ‖ for norms (and to use some-
thing distinctive like p(·) for seminorms).

2.2.3 Examples. (i) We saw the definitions L1([0, 1]), L1(T) and L1(R) in Chapter 1. In each
case we defined a ‘magnitude’ ‖f‖1 and it is a seminorm in each case. We stated that
explicitly for L1([0, 1]) in Lemma 1.1.5.2.

(ii) On C(T) we can define a norm known as the uniform norm by

‖F‖∞ = sup
ζ∈T
|F (ζ)| (F ∈ C(T))

and on CP [0, 1] we have the analogous uniform norm

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

In fact we should recognize ‖f‖∞ for f ∈ C[0, 1] from MA2223.

2.2.4 Proposition. If ‖ · ‖ is a norm on a vector space V , then we have a (naturally) associated
metric on V given by

d(v, w) = ‖v − w‖

Proof. We omit the details. They are straightforward and should be familiar from MA2223.

2.2.5 Proposition. If ‖ · ‖ is a seminorm on a vector space V , then V0 = {v ∈ V : ‖v‖ = 0} is
a vector subspace and we may define a norm on the quotient vector space V/V0 by

‖v + V0‖ = ‖v‖

We also then have a (naturally) associated metric on V/V0 given by

d(v + V0, w + V0) = ‖v − w‖

Proof. If v, w ∈ V0 and λ ∈ K, then

‖v + λw‖ ≤ ‖v‖+ ‖λw‖ = ‖v‖+ |λ|‖w‖ = 0

and so v + λw ∈ V0. Also 0 ∈ V0 and so V0 is a vector subspace.
To show that ‖v + V0‖ is well defined, suppose v + V0 = w + V0 for v, w ∈ V . Then

v − w ∈ V0, so ‖v − w‖ = 0 and

‖v‖ = ‖w + (v − w)‖ ≤ ‖w‖+ ‖v − w‖ = ‖w‖.

Similarly ‖w‖ ≤ ‖v‖ and so ‖v‖ = ‖w‖.
It is straightforward to check that the seminorm properties hold for the function v + V0 7→

‖v + V0‖ and it is a norm since ‖v + V0‖ = 0⇒ ‖v‖ = 0⇒ v ∈ V0 ⇒ v + V0 = V0 is the zero
element of V/V0.
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2.2.6 Definition. L1(T) is the quotient vector space L1(T)/{F ∈ L1(T) : ‖F‖1 = 0} and we
also use ‖ · ‖1 for the norm on L1(T).

Similarly for L1([0, 1]) and L1(R).

2.2.7 Remark. So the elements of any of theseL1 spaces are not exactly measurable functions, but
rather cosets or equivalence classes of measurable functions. Two functions in L1 represent the
same coset (or class) in L1 when they are equal almost everywhere (because ‖f‖1 = 0 ⇐⇒ f
is almost everywhere zero on the domain in question).

There is some possibility of a misunderstanding because we will tend not to distinguish
carefully between a single measurable f ∈ L1 and its almost everywhere equivalence class
f ∈ L1, but this is a standard way to proceed. If you ever find yourself tempted to prove
something about one value of f , like f(1/3) for f ∈ L1[0, 1], then it cannot be right because you
can change the value of f(x) at x = 1/3 without changing the equivalence class. You can only
hope to prove things that rely on the values of f(x) for x in a set of positive measure.

What we are aiming for is to prove convergence of Fourier series. That means to prove
limN→∞ SNf = f (and maybe variations of this) for suitable interpretations of what the limit
might mean (and we will need some hypotheses on f ). We might like it to mean convergence in
the uniform norm, that is limN→∞ ‖SNf − f‖∞ = 0 when f ∈ C(T) or f ∈ CP [0, 1]. When
f ∈ L1(T), we might hope for limN→∞ ‖SNf − f‖1 = 0.

Other norms will show up later and in §2.4 we introduce a class of norms (or seminorms) that
we can manage.

2.3 Translations and convolutions

2.3.1 Definition (Translations). For f : R → C and y ∈ R we define the translate of f by y to
be the function fy : R→ C given by fy(x) = f(x− y).

For f ∈ CP [0, 1] we use the same terminology and the same definition of fy (for which
we need to consider the periodic extension of f to R — we then restrict fy back to [0, 1] to get
fy ∈ CP [0, 1].

For F ∈ C(T) and η = e2πiy ∈ T we define Fη ∈ C(T) by Fη(ζ) = F (ζη−1). (Note that for
f(x) = F (e2πix) we have fy(x) = F (e2πi(x−y) = Fη(e

2πix), so that this is essentially the same
notion of translation again).

For f ∈ L1(R) we define fy by fy(x) = f(x− y) and then fy ∈ L1(R).
For f ∈ L1[0, 1] we define fy by fy(x) = f(x− y (mod 1) ) where we need to reduce x− y

to x− y− n ∈ [0, 1] with n ∈ Z. For F ∈ L1(T) we define Fη ∈ L1(T) by Fη(ζ) = F (ζη−1) as
above.

2.3.2 Definition (Convolution). If f, h ∈ Cc(R) we define their convolution f ∗ h : R→ C by

(f ∗ h)(x) =

∫
y∈R

f(y)h(x− y) dµ(y) =

∫ ∞
−∞

f(y)h(x− y) dy =

∫
R
f(y)hy(x) dµ(y)

(a finite integral because of the compact support of f ).
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If f, h ∈ CP [0, 1] we define their convolution f ∗ h : [0, 1]→ C by

(f ∗ h)(x) =

∫
y∈[0,1]

f(y)hy(x) dµ(y) =

∫ 1

0

f(y)h(x− y (mod 1) ) dy =

∫
[0,1]

f(y)hy(x) dµ(y)

(with the same f ∗ h notation even though it has a different meaning — if f and h are extended
periodically to R, they would not have compact support unless they are zero and the previous
definition could not be used).

If F,H ∈ C(T) we define their convolution F ∗H : T→ C by

(F ∗H)(ζ) = (F ∗H)(e2πix) =

∫ 1

0

F (e2πiy)H(e2πi(x−y)) dy =

∫
T
F (η)Hη(ζ) dλ(η)

(where λ is normalized arc length measure on T, ζ = e2πix ∈ T).

2.3.3 Remark. The definition of convolution on CP [0, 1] is really convolution on C(T), when
we regard f ∈ CP [0, 1] as the ‘same as’ F ∈ C(T) with F (e2πix) = f(x).

2.3.4 Theorem. (a) If F,H ∈ L1(T), then η 7→ F (η)Hη(ζ) is in L1(T) for almost every ζ ∈ T
and defining F ∗ H : T → C (almost everywhere) by (F ∗ H)(ζ) =

∫
T F (η)Hη(ζ) dλ(η)

gives F ∗H ∈ L1(T).

Moreover ‖F ∗H‖1 ≤ ‖F‖1‖H‖1.

(b) If f, h ∈ L1[0, 1], then y 7→ f(y)hy(x) is in L1[0, 1] for almost every x ∈ [0, 1] and defining
f ∗ h : [0, 1]→ C (almost everywhere) by (f ∗ h)(x) =

∫
[0,1]

f(y)hy(x) dµ(y) gives f ∗ h ∈
L1[0, 1].

Moreover ‖f ∗ h‖1 ≤ ‖f‖1‖h‖1.

(c) If f, h ∈ L1(R), then y 7→ f(y)hy(x) is in L1(R) for almost every x ∈ R and defining
f ∗h : R→ C (almost everywhere) by (f ∗h)(x) =

∫
R f(y)hy(x) dµ(y) gives f ∗h ∈ L1(R).

Moreover ‖f ∗ h‖1 ≤ ‖f‖1‖h‖1.

Proof. For this we need Fubini’s theorem (which was not in MA2224 but is stated at Theo-
rem A.1.13 in Appendix A.1).

We apply it to φ(x, y) = f(y)h(x − y) where f(x) = F (e2 πix) and h(x) = H(e2πix). One
can check that φ is measurable on [0, 1]× [0, 1].∫

y∈[0,1]

∫
x∈[0,1]

|φ(x, y)| dµ(x) dµ(y) =

∫
y∈[0,1]

|f(y)|
(∫

x∈[0,1]
|h(x− y)| dµ(x)

)
dµ(y)

The inner integral is ‖h‖1 = ‖H‖1 and then the result is ‖F‖1‖G‖1. By Fubini, φ is integrable
on [0, 1]× [0, 1] and

‖F‖1‖G‖1 =

∫
y∈[0,1]

∫
x∈[0,1]

|φ(x, y)| dµ(x) dµ(y) =

∫
x∈[0,1]

∫
y∈[0,1]

|φ(x, y)| dµ(y) dµ(x)
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Hence
∫
y∈[0,1] |φ(x, y)| dµ(y) <∞ for almost all x and

‖F‖1‖G‖1 =

∫
x∈[0,1]

∫
y∈[0,1]

|φ(x, y)| dµ(y) dµ(x)

≥
∫
x∈[0,1]

∣∣∣∣∫
y∈[0,1]

φ(x, y) dµ(y)

∣∣∣∣ dµ(x)

=

∫
x∈[0,1]

|(f ∗ h)(x)| dµ(x)

= ‖f ∗ h‖1 = ‖F ∗H‖1

This shows (a) and (b) is really the same statement as (a).
For (c) the proof is the same, using R instead of [0, 1] and omitting reference to F andH .

2.3.5 Lemma. The convolution product in L1(T) makes L1(T) an algebra, or a ‘linear algebra’
to distinguish it from an algebra (Boolean algebra) of subsets, that is L1(T) is a vector space
with a product ∗ that satisfies

(LinAlg1) F ∗H ∈ L1(T) for F,H ∈ L1(T)

(LinAlg2) F ∗ (H + λK) = F ∗H + λF ∗K and
(F + λK) ∗H = F ∗H + λK ∗H
hold for F,H,K ∈ L1(T) and λ ∈ C

(LinAlg3) (associativity of multiplication)
(F ∗H) ∗K = F ∗ (H ∗K) for F,H,K ∈ L1(T)

It is in fact a commutative algebra, that is F ∗H = H ∗ F for F,H ∈ L1(T).
The property ‖F ∗H‖1 ≤ ‖F‖1‖H‖1 (for H,K ∈ L1(T)) is called submultiplicativity of the

norm ‖ · ‖1, and an algebra with a submultiplicative norm is called a normed algebra.

Proof. We have (LinAlg1) from Theorem 2.3.4 and (LinAlg2) follows by linearity of integrals
(valid even for integrals of C-valued functions). Showing (LinAlg3) requires Fubini’s theorem
to exchange the order of integration.

Showing F ∗H = H ∗ F requires a small change of variables argument.

2.3.6 Remark. In fact L1(T) is complete1 in the distance arising from the norm ‖ · ‖1 (which
we show in Appendix A.2) and a complete normed space is called a Banach space. A complete
normed algebra is called a Banach algebra and L1(T) is then a commutative Banach algebra.

The same is true about L1([0, 1]) and L1(R) with ∗ and ‖ · ‖1 (with the same proofs).
Our aim now is results along the lines of recovering f ∈ L1(T) from its Fourier series, but

there are results that are more satisfactory for smaller spaces with certain properties as defined
now.

1Recall that by definition a metric space is complete if every Cauchy sequence in the space has a limit in the
space.
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2.4 Homogeneity of spaces of functions
2.4.1 Definition. If (B, ‖ · ‖B) is a Banach space of functions (or of almost everywhere equiva-
lence classes of functions) on T we call B a homogeneous Banach space on T if it satisfies

(HB1) B ⊆ L1(T) and ‖F‖1 ≤ ‖F‖B for F ∈ B

(HB2) (translation invariance) if F ∈ B and η ∈ T, then Fη ∈ B and ‖Fη‖B = ‖F‖B (where
Fη(ζ) = F (ζη−1) as in Definition 2.3.1)

(HB3) (continuity property of translates) if F ∈ B and η0 ∈ T, then

lim
η→η0
‖Fη − Fη0‖ = 0

2.4.2 Examples.

(i) B = C(T) with ‖F‖B = ‖F‖∞ is a homogeneous Banach space in this sense.

Proof. It is very easy that ‖F‖1 ≤ ‖F‖∞ for F ∈ C(T) because

‖F‖1 =

∫
T
|F (ζ)| dλ ≤

∫
T
‖F‖∞ dλ = ‖F‖∞

It is also clear that Fη ∈ C(T) for η ∈ T and the last property (HB3) follows from uniform
continuity of continuous functions on the compact circle T.

(ii) We define C1(T) to be the continuously differentiable functions, where the derivative F ′ is
defined as

F ′(e2πix) =
1

2πi

d

dx
F (e2πix).

So C1(T) = {F ∈ C(T) : ∃F ′ and F ′ ∈ C(T)}. If we norm the space with

‖F‖∞,1 = ‖F‖∞ + ‖F ′‖∞

then (C1(T), ‖ · ‖∞,1) is also a homogeneous Banach space in the above sense.

Proof. The proof is not so much more complicated that the proof for (C(T), ‖ · ‖∞).

(iii) Our other main examples with be L1(T) itself and L2(T) (defined below and in §A.3).

However, to prove that L1(T) satisfies (HB3) requires knowing that continuous functions
are dense in L1(T), and also knowing that the space is complete. See Theorem A.2.4 and
Corollary A.2.7 in the appendices.

For L1(T), property (HB1) is obvious and (HB2) follows by a change of variables in the
integral defining the norm.
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If F ∈ C(T), then ‖F‖1 ≤ ‖F‖∞ by the triangle inequality for integrals. It follows that
for η, η0 ∈ T

lim
η→η0
‖Fη − Fη0‖1 ≤ lim sup

η→η0
‖Fη − Fη0‖∞ = 0

(whenF ∈ C(T)). For generalF ∈ L1(T) choose a sequenceFn ∈ C(T) with limn→∞ ‖F−
Fn‖1 = 0. Given ε > 0 choose n so large that ‖F − Fn‖1 < ε/3. If η0 is fixed then, for
|η − η0| small enough, ‖(Fn)η − (Fn)η0‖∞ < ε/3. So

‖Fη − Fη0‖1 ≤ ‖Fη − (Fn)η‖1 + ‖(Fn)η − (Fn)η0‖1 + ‖(Fn)η0 − Fη0‖1
= ‖F − Fn‖1 + ‖(Fn)η − (Fn)η0‖1 + ‖Fn − F‖1
<

ε

3
+ ‖(Fn)η − (Fn)η0‖∞ +

ε

3
< ε

for |η − η0| small. This shows (HB3) for L1(T).

The definition of L2(T) is as the space of measurable F : T→ C such that∫
T
|F (ζ)|2 dλ(ζ) <∞

and we define the ‘norm’ on L2(T) by

‖F‖2 =

(∫
T
|F (ζ)|2 dλ(ζ)

)1/2

There are some of the same issues here as with L1(T). Actually we should say that the
definition given is of what should be denoted L2(T) (by analogy with L1(T)) and L2(T) is
the quotient of L2(T) by {F ∈ L2(T) : ‖F‖2 = 0}, or the almost everywhere equivalence
classes of measurable functions F ∈ L2(T).

While it was very easy to check that ‖ · ‖1 is a seminorm, to show that for ‖ · ‖2 requires a
little effort (see §A.3).

For L2(T), to show property (HB1), observe that it follows from the Cauchy-Schwarz in-
equality that ‖F‖1 = 〈|F |, 1〉 ≤ ‖F‖2‖1‖2 = ‖F‖2 holds for F ∈ L2(T). (Here 1 means
the constant function.) (HB2) is easy to verify by a change of variables in the integral
defining the norm.

Property (HB3) for L2(T) follows from the density of C(T) in and L2(T) (see Corol-
lary A.3.7) in the same way as for L1(T).

2.4.3 Definition. If B is a Banach space and φ : [0, 1] → B is a continuous function (vector-
valued or B-valued) then we define ∫ 1

0

φ(x) dx

using the Riemann integral approach (which can be adapted to the vector-valued case).



10 Chapter 2: Convergence results for Fourier series

So ∫ 1

0

φ(x) dx = lim
n→∞

n∑
j=1

φ((j − 1)/n)
1

n

using the partition 0 < 1/n < 2/n < · · · < (n−1)/n < 1 of [0, 1]. We could use other Riemann
sums with mesh sizes tending to 0 and get the same result. (The limit exists as a consequence
of uniform continuity of φ and completeness of B, in the same way as for R-valued Riemann
integrals. Proofs of this and simple properties of Banach space valued integrals will generally
involve considering more general kinds of Riemann sums than the one above.)

2.4.4 Lemma (Vector-valued triangle inequality for Riemann integrals). If φ : [0, 1] → B is a
continuous function with values in a Banach space B, then∥∥∥∥∫ 1

0

φ(x) dx

∥∥∥∥ ≤ ∫ 1

0

‖φ(x)‖ dx

Proof. This follows from∥∥∥∥∥
n∑
j=1

φ((j − 1)/n)
1

n

∥∥∥∥∥ ≤
n∑
j=1

‖φ((j − 1)/n)‖ 1

n

which is true by the ordinary finite triangle inequality. Just let n→∞.

2.4.5 Lemma. If φ : [0, 1] → B is a continuous function with values in a Banach space B, and
T : B → C is a continuous linear transformation with values in a Banach space C, then

T

(∫ 1

0

φ(x) dx

)
=

∫ 1

0

T (φ(x)) dx

Proof. Since T is linear

T

(
n∑
j=1

φ((j − 1)/n)
1

n

)
=

n∑
j=1

T (φ((j − 1)/n))
1

n

we can take limits of both sides as n→∞ and use continuity of T to prove the result.

2.4.6 Proposition. Suppose that φ, F ∈ C(T). Then the convolution φ ∗F may be written as the
C(T)-valued integral

φ ∗ F =

∫ 1

0

φ(e2πix)Fe2πix dx ∈ C(T).

Proof. Because of (HB3) for the example B = C(T) we know that for F ∈ C(T), η 7→ Fη is a
C(T)-valued continuous function on T. Hence x 7→ Fe2πix is continuous on [0, 1] (and periodic),
as the composition of continuous functions. So then also x 7→ φ(e2πix)Fe2πix is continuous (as
the product of continuous functions, even though one is a vector-valued function). Hence, the
C(T)-valued integral

∫ 1

0
φ(e2πix)Fe2πix dx makes sense in C(T).
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If we fix ζ ∈ T, then there is an associated point evaluation linear transformation

Tζ : C(T)→ C

given by Tζ(H) = H(ζ) for H ∈ C(T). This is continuous because if ε > 0 and H,K ∈ C(T)
have ‖H −K‖∞ < ε, then |H(ζ)−K(ζ)| ≤ ‖H −K‖∞ < ε. So in the definition of continuity
we can take δ = ε.

If we apply Lemma 2.4.5 to the linear transformation Tζ , we find

Tζ

(∫ 1

0

φ(e2πix)Fe2πix dx

)
=

∫ 1

0

Tζ(φ(e2πix)Fe2πix) dx =

∫ 1

0

φ(e2πix)Fe2πix(ζ) dx

= (φ ∗ F )(ζ)

holds for each ζ ∈ T. That says ∫ 1

0

φ(e2πix)Fe2πix dx = φ ∗ F

in C(T).

2.4.7 Proposition. Suppose that B is a homogeneous Banach space such that C(T) ⊆ B is a
dense subspace of B and ‖F‖B ≤ ‖F‖∞ for F ∈ C(T).

Then, for F ∈ B and φ ∈ C(T) continuous, φ ∗ F is equal almost everywhere to∫ 1

0

φ(e2πix)Fe2πix dx ∈ B.

Proof. Fix φ ∈ C(T).
As in the case B = C(T) we can use (HB3) to show that x 7→ φ(e2πix)Fe2πix is continuous

from [0, 1] to B and that the B-valued integral∫ 1

0

φ(e2πix)Fe2πix dx ∈ B

makes sense for F ∈ B.
ForF ∈ B there is a sequence (Fn)∞n=1 inC(T) such that limn→∞ Fn = F , that is limn→∞ ‖Fn−

F‖B = 0. Then limn→∞ ‖Fn − F‖1 = 0 by (HB1).
It follows from Proposition 2.4.6 that∫ 1

0

φ(e2πix)(Fn)e2πix dx = φ ∗ (Fn) ∈ C(T) (n = 1, 2, . . .).

Applying Lemma 2.4.5 to the the continuous (linear) inclusion C(T) ⊆ B these equations also
hold in B. (That is the C(T)-valued integral is the same as the B-valued integral for each n.)
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Next∥∥∥∥∫ 1

0

φ(e2πix)(Fn)e2πix dx−
∫ 1

0

φ(e2πix)Fe2πix dx

∥∥∥∥
B

=

∥∥∥∥∫ 1

0

φ(e2πix)(Fn − F )e2πix dx

∥∥∥∥
B

≤
∫ 1

0

‖φ(e2πix)(Fn − F )e2πix‖B dx

≤
∫ 1

0

‖φ‖∞‖(Fn − F )e2πix‖B dx

= ‖φ‖∞
∫ 1

0

‖Fn − F‖B dx

= ‖φ‖∞‖Fn − F‖B → 0

Hence

lim
n→∞

φ ∗ Fn =

∫ 1

0

φ(e2πix)Fe2πix dx

holds in B. Applying (HB1), it also holds in L1(T).

‖φ ∗ (Fn)− φ ∗ F‖1 = ‖φ ∗ (Fn − F )‖1 ≤ ‖φ‖1‖Fn − F‖1 ≤ ‖φ‖1‖Fn − F‖B → 0.

This means that in L1(T) we have two limits, for the sequence (φ∗Fn)∞n=1, the B-valued integral∫ 1

0
φ(e2πix)Fe2πix dx and the element φ ∗ F ∈ L1(T). They must agree and so we get the result.

One case of interest to us is the case B = L1(T).

2.5 Summability kernels
2.5.1 Definition. A sequence Kn(ζ) ∈ C(T) (n = 1, 2, . . .) is called a (positive) summability
kernel if it satisfies

(SK1) Kn(ζ) ≥ 0 (∀n ∈ N, ζ ∈ T)

(SK2)
∫
TKn dλ = 1 (∀n)

(SK3) for 0 < δ < 2

lim
n→∞

∫
{ζ∈T:|ζ−1|≥δ}

Kn(ζ) dλ(ζ) = 0

We can also refer to kn(x) = Kn(e2πix) as a summability kernel (on [0, 1]).

Notice that (SK3) implies that Kn must be concentrated close to ζ = 1 (to satisfy (SK2)) for
n large. For kn, the bulk of the mass (or the area under the graph) of kn(x) must be where x is
close to the endpoints of [0, 1] (when n is large).
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2.5.2 Proposition. IfB is a homogeneous Banach space that contains C(T) as a dense subspace
and satisfies ‖F‖B ≤ ‖F‖∞ for F ∈ C(T), and if (Kn)∞n=1 is a summability kernel, then for
F ∈ B,

lim
n→∞

‖Kn ∗ F − F‖B = 0

Proof. Fix F ∈ B and ε > 0. Then (by (HB3)) there is δ > 0 such that ‖F − Fη‖B < ε for
|ζ − 1| < δ.

To help our notation, we write Eδ = {x ∈ [0, 1] : |e2πix − 1| < δ}. By Proposition 2.4.7, we
can express Kn ∗ F as a B-valued integral

Kn ∗ F =

∫ 1

0

Kn(e2πix)Fe2πix dx

=

∫
Eδ

Kn(e2πix)Fe2πix dx+

∫
[0,1]\Eδ

Kn(e2πix)Fe2πix dx (2.5.1)

(Here we split the B-valued integral as a sum where the first integral extends over two intervals
at either end of [0, 1] and the second over one interval. We have not actually developed B-valued
integrals over intervals other than [0, 1] or proved that these integrals can be split in this way, but
it can be done in the same way as for Riemann integrals of continuous scalar-valued functions.)
We will compare that to

F =

(∫ 1

0

Kn(e2πix) dx

)
F =

∫ 1

0

Kn(e2πix)F dx =

∫
Eδ

Kn(e2πix)F dx+

∫
[0,1]\Eδ

Kn(e2πix)F dx

Applying Lemma 2.4.4 (or a strictly speaking a variant of it) we can estimate the second
integral in (2.5.1)∥∥∥∥∫

[0,1]\Eδ
Kn(e2πix)Fe2πix dx

∥∥∥∥
B

≤
∫
[0,1]\Eδ

Kn(e2πix)‖Fe2πix‖B dx

= ‖F‖B
∫
[0,1]\Eδ

Kn(e2πix) dx

and this is small for large n by (SK3). Similarly
∫
[0,1]\Eδ

Kn(e2πix)F dx also has small norm for
large n.

On the other hand ∥∥∥∥∫
Eδ

Kn(e2πix)Fe2πix dx−
∫
Eδ

Kn(e2πix)F dx

∥∥∥∥
B

=

∥∥∥∥∫
Eδ

Kn(e2πix)(Fe2πix − F ) dx

∥∥∥∥
B

≤
∫
Eδ

Kn(e2πix)‖Fe2πix − F‖B dx

≤ ε

∫
Eδ

Kn(e2πix) dx ≤ ε
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Hence ∥∥∥∥∫
Eδ

Kn(e2πix)Fe2πix dx−
(∫

Eδ

Kn(e2πix) dx

)
F

∥∥∥∥
B

≤ ε

Since the first integral is close to Kn ∗ F and∫
Eδ

Kn(e2πix) dx ≈
∫ 1

0

Kn(e2πix) dx = 1

for n large, we deduce that Kn ∗ F is close to F for n large.

2.5.3 Lemma. Recalling the notation χn(ζ) = ζn (n ∈ Z),

χn ∗ F = F̂ (n)χn

for F ∈ L1(T).

Proof.

(χn ∗ F )(e2πix) = (F ∗ χn)(e2πix)

=

∫ 1

0

F (e2πiy)(e2πi(x−y))n dy

= (e2πix)n
∫ 1

0

F (e2πiy)(e−2πiy)n dy

= (e2πix)nF̂ (n) = F̂ (n)χn(e2πix)

2.5.4 Definition. The Dirichlet kernel is the sequenceDN(ζ) =
∑N

n=−N ζ
n of functionsDN : T→

C (for N = 0, 1, 2, . . .).

2.5.5 Proposition. For F ∈ L1(T), the N th partial sum SNF of the Fourier series for F is given
by

SNF = DN ∗ F

Proof. Use Lemma 2.5.3.

2.5.6 Lemma.
DN(e2πix) =

sin((2N + 1)πx)

sin(πx)

for e2πix 6= 1.

Proof. By the formula
∑2n

j=0 ar
j = a(1− r2n+1)/(1− r) for a geometric sum (valid for r 6= 1)

DN(ζ) = ζ−N
1− ζ2N+1

1− ζ
=
ζ−N − ζN+1

1− ζ
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Multiply above and below by ζ−1/2 to get

DN(ζ) =
ζ−N−1/2 − ζN+1/2

ζ−1/2 − ζ1/2

Replacing ζ by e2πix, this reduces to (−2i sin((2N + 1)πx))/(−2i sin(πx)) and so we have the
result.

2.5.7 Remark. The Dirichlet kernel does not provide a summability kernel since it is not positive.
Thus we cannot apply Proposition 2.5.2 with DN . (If we could, we would have a quick proof
that Fourier series converge in many different norms ‖ · ‖B. However, not only does this way
of attempting to prove it fail but it is not always true in homogeneous Banach spaces, and in
particular in L1(T) and C(T) too.)

2.5.8 Definition. If (xn)∞n=1 is a sequence in a normed space E, the Cesàro averages are defined
as

1

n
(x1 + x2 + · · ·+ xn)

The sequence of Cesàro averages is called the Cesàro mean of the original sequence (xn)∞n=1.
If
∑∞

n=1 xn is a series in a normed spaceE, the series is said to be Cesàro summable to s ∈ E
if

lim
n→∞

1

n
(s1 + s2 + ·+ sn) = s

in E, where sj =
∑j

k=1 xk = x1 + x2 + · · ·+ xj is the jth partial sum of the series.
(So this is the limit of the Cesàro averages of the partial sums.)

2.5.9 Proposition. If
∑∞

n=1 xn is a convergent series in a normed space E, then
∑∞

n=1 xn is
Cesàro summable to the same sum s = limn→∞(x1 + x2 + · · ·+ xn).

Proof. Let sn =
∑n

j=1 xj denote the partial sums, so that limn→∞ ‖sn − s‖ = 0.
If ε > 0 is fixed, by assumption there is n0 such that ‖sn − s‖ < ε/2 all n ≥ n0. It follows

that for n ≥ n0∥∥∥∥sn0 + sn0+1 + · · ·+ sn
n− n0 + 1

− s
∥∥∥∥ =

∥∥∥∥∥
n∑

j=n0

sj − s
n− n0 + 1

∥∥∥∥∥ =
n∑

j=n0

‖sj − s‖
n− n0 + 1

<
ε

2

Hence ∥∥∥∥∥
∑n

j=1 sj

n
− s

∥∥∥∥∥ =

∥∥∥∥∥
∑n0−1

j=1 sj − s
n

+

∑n
j=n0

sj − s
n

∥∥∥∥∥
≤ 1

n

∥∥∥∥∥
n0−1∑
j=1

sj − s

∥∥∥∥∥+
n− n0 + 1

n

∥∥∥∥∥
∑n

j=n0
sj − s

n− n0 + 1

∥∥∥∥∥
≤ 1

n

∥∥∥∥∥
n0−1∑
j=1

sj − s

∥∥∥∥∥+
n− n0 + 1

n

ε

2
< ε

for n large enough.
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2.5.10 Example. Consider the series
∑∞

n=1 xn in R where xn = (−1)n+1. The partial sums sn
are 1 for n odd and 0 for n even. It follows that

1

2n
(s1 + s2 + · · ·+ s2n) =

1

2

and
1

2n− 1
(s1 + s2 + · · ·+ s2n−1) =

2n− 2

2n− 1
→ 1

2

Thus the series is Cesàro summable to 1/2 (but not summable in the usual sense).

2.5.11 Definition. The Fejér kernel is the sequence KN(ζ) = (1/N)
∑N−1

n=0 Dn(ζ) of functions
KN : T→ C (for N = 1, 2, . . .).

2.5.12 Proposition. . For F ∈ L1(T), the convolution KN ∗ F is the N th Cesàro average

KN ∗ F =
1

N
(S0F + S1F + · · ·+ SN−1F )

of the partial sums of the Fourier series for F .

Proof. This follows immediately from the definition of KN and Proposition 2.5.5.

2.5.13 Proposition.

KN(e2πix) =
1

N

(
sin(πNx)

sin(πx)

)2

=
1

N

1− cos(2πNx)

1− cos(2πx)

for 0 < x < 1.

Proof. We have

KN(ζ) =
1

N

N−1∑
n=0

Dn(ζ)

=
1

N

N−1∑
n=0

sin((2n+ 1)πx)

sin(πx)

=
1

N sin(πx)
Im

N−1∑
n=0

Im e(2n+1)πix

=
1

N sin(πx)
Im eπix

e2Nπix − 1

e2πix − 1

=
1

N sin(πx)
Im

e2Nπix − 1

eπix − e−πix

=
1

N sin(πx)
Im

e2Nπix − 1

2i sin(πx)

=
1

N sin2(πx)
Re

1− e2Nπix

2
=

1− cos(2Nπx)

2N sin2(πx)

The two formulae for KN follow from the trigonometric identity cos(2θ) = 1− 2 sin2 θ.
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2.5.14 Proposition. The Fejér kernel sequence (KN)∞N=1 is a summability kernel.

Proof. It is easy to see that
∫ 1

0
Dn(e2πix) dx =

∑n
j=0

∫ 1

0
e2πijx dx = 1 and then

∫ 1

0

FN(e2πix) dx =
1

N

N−1∑
n=0

∫ 1

0

Dn(e2πix) dx = 1

From Proposition 2.5.13, KN(e2πix) > 0 for 0 < x < 1 (and KN(1) = N > 0).
If |e2πix − 1| > δ, then dividing by 1 = |eπix| we get |eπix − e−πix| > δ or 2| sin(πx)| > δ.

Hence

KN(e2πix) =
1

N

(
sin(πNx)

sin(πx)

)2

≤ 1

N

sin2(πNx)

δ2/4
≤ 4

Nδ2

for |e2πix − 1| > δ and ∫
{x∈[0,1]:|e2πix−1|>δ

KN(e2πix) dx ≤ 4

Nδ2
→ 0

Thus (SK3) holds and the proof is complete.

2.6 Fejér’s theorem
2.6.1 Corollary (Fejér’s theorem). If B is a homogeneous Banach space that contains C(T) as
a dense subspace, and satisfies ‖F‖B ≤ ‖F‖∞ for F ∈ C(T), then the Fourier series of each
F ∈ B converges to F in the Cesàro sense

lim
N→∞

∥∥∥∥S0F + S1F + · · ·+ SN−1F

N
− F

∥∥∥∥
B

= 0

Proof. This is immediate from Propositions 2.5.2 and 2.5.14.

2.6.2 Theorem (Continuously differentiable functions have convergent Fourier series). If f : R→
C has f(x+ 1) = f(x) and f has a continuous derivative f ′, then

lim
N→∞

sup
x∈[0,1]

∣∣∣∣∣
(

N∑
n=−N

f̂(n)e2πinx

)
− f(x)

∣∣∣∣∣ = 0

In other words, the partial sums SNf(x) converge to f(x) (as N →∞) uniformly in x.

Proof. From Corollary 2.1.5 we know that
∑∞

n=−∞ |f̂(n)| < ∞. Since absolutely convergent
series are convergent, we may now define f0 : R→ C as

f0(x) =
∞∑

n=−∞

f̂(n)e2πinx = lim
N→∞

SNf(x)
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and the limit is uniform in x because

|f0(x)− SNf(x)| ≤
∑
|n|>N

|f̂(n)| (x ∈ [0, 1])

gives

‖f0 − SNf‖∞ = sup
x∈[0,1]

|f0(x)− SNf(x)| ≤
∑
|n|>N

|f̂(n)| → 0 (as N →∞).

Then Proposition 2.5.9 gives

lim
N→∞

∥∥∥∥S0f + S1f + · · ·+ SN−1f

N
− f0

∥∥∥∥
∞

= 0

But Fejér’s theorem (Corollary 2.6.1) (applied to F (e2πix) = f(x)) implies the same with f0
replaced by f . Hence f0 = f and limN→∞ ‖f − SNf‖∞ = 0.

Fejér’s theorem has several other consequences.

2.6.3 Notation. For F ∈ L1(T) we use σNF to denote the Cesàro average

σNF =
S0F + S1F + · · ·+ SN−1F

N

Then the conclusion of Fejér’s theorem can be stated more concisely as limN→∞ ‖σNF −F‖B =
0.

Note that σNF (ζ) = (1/N)
∑N−1

n=0 SnF (ζ) = (1/N)
∑N−1

n=0

∑n
j=−n F̂ (j)ζj and this can be

rearranged as
N−1∑

n=−N+1

(1− |n|/N)F̂ (n)ζn

2.6.4 Corollary (Wierstrass theorem). The trigonometric polynomials are dense in C(T).

Proof. By Fejér’s theorem (Corollary 2.6.1) applied to B = C(T), for F ∈ C(T) we have
limN→∞ ‖σNF − F‖∞ = 0.

But σNF (ζ) is a trigonometric polynomial for each N .

2.6.5 Corollary (Fourier series determine L1(T) functions). An element F ∈ L1(T) is uniquely
determined by its Fourier series.

(In other words, if F,H ∈ L1(T) have F̂ (n) = Ĥ(n) for each n ∈ Z, then F = H .)

Proof. If F,H ∈ L1(T) have F̂ (n) = Ĥ(n) for each n ∈ Z, the σNF = σNH for each N . By
Fejér’s theorem (Corollary 2.6.1) applied to B = L1(T), we have

F = lim
N→∞

σNF = lim
N→∞

σNH = H

(limits in (L1(T), ‖ · ‖1)).
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2.6.6 Corollary (L2 convergence of Fourier series). If F ∈ L2(T), then

lim
N→∞

‖SNF − F‖2 = 0

Proof. In L2(T) we can write Fourier coefficients as inner products F̂ (n) = 〈F, χn〉 where
χn(ζ) = ζn. So

SNF =
N∑

n=−N

〈F, χn〉χn

for F ∈ L2(T).
We can also write σNF as a linear combination σNF =

∑N−1
n=−N+1(1−|n|/N)F̂ (n)χn of the

χn with |n| < N . (We will not need the exact values (1− |n|/N)F̂ (n) of the coefficients in our
proof.)

As in the proof of Proposition 2.1.2, it is easy to verify 〈χn, χm〉 = δn,m (that is 0 if n 6= m
and 1 if n = m). It follows that 〈F −SNF, χn〉 = 0 for |n| ≤ N and then that 〈F −SNF, p〉 = 0
for any trigonometric polynomial p of degree ast most N .

Observe that
F − σNF = (F − SNF ) + (SNF − σNF )

is a sum of F − SNF and a trigonometric polynomial SNF − σNF of degree at most N . It
follows that F − SNF is orthogonal to SNF − σNF .

For orthogonal vectors v, w in an inner product space we have

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉 = ‖v‖2 + ‖w‖2

and so

‖F − σNF‖22 = ‖(F − SNF ) + (SNF − σNF )‖22
= ‖F − SNF‖22 + ‖SNF − σNF‖22
≥ ‖F − SNF‖22

But Fejér’s theorem (Corollary 2.6.1) applied to B = L2(T), we have limN→∞ ‖F −σNF‖2 = 0
and so the preceding inequality now implies limN→∞ ‖F − SNF‖2 = 0.

2.6.7 Corollary (Parseval’s identity for Fourier series). If F ∈ L2(T), then

‖F‖2 =

(
∞∑

n=−∞

|F̂ (n)|2
)1/2

Proof. Using orthonormality of the caracters χn,

‖SNF‖22 = 〈SNF, SNF 〉 =
N∑

n=−N

|F̂ (n)|2

Since limN→∞ ‖F−SNF‖2 = 0, limN→∞(‖F‖2−‖SNF‖2) = 0 (because the triangle inequality
for norms implies |‖v‖ − ‖w‖| ≤ ‖v − w‖ for vectors v and w in any normed space). Hence
‖F‖2 = limN→∞ ‖SNF‖2 gives the result.
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2.6.8 Corollary (Fourier characterization of L2(T)). If F ∈ L1(T), then F ∈ L2(T) holds if and
only if

∞∑
n=−∞

|F̂ (n)|2 <∞

In fact, if (an)n∈Z is a sequence of scalars with
∑∞

n=−∞ |an|2 < ∞, then there is F ∈ L2(T)

with F̂ (n) = an for all n ∈ Z.

Proof. We already know (from Parseval’s identity, Corollary 2.6.7) that if F ∈ L2(T), then the
Fourier coefficients are square summable.

For the converse, if
∑∞

n=−∞ |F̂ (n)|2 < ∞, let sN ∈ L2(T) be the trigonometric polynomial
sN(ζ) = SNF (ζ).

We claim that (sN) is a Cauchy seqeunce in L2 and that the Fourier coefficients of the limit
s = limN→∞ sN ∈ L2(T) agree with those of F .

If N < M , we have sM − sN =
∑M

n=N+1 F̂ (n)χn +
∑−N−1

n=−M F̂ (n)χn (where χn(ζ) = ζn).
Using orthonormaility of the χn we get

‖sM − sN‖22 =
∑

N<|n|≤M

|F̂ (n)|2 = ‖sM‖22 − ‖sN‖2

By assumption

∞∑
n=−∞

|F̂ (n)|2 = lim
N→∞

N∑
n=−N

|F̂ (n)|2 = lim
N→∞

‖sN‖22 <∞

and so ‖sM‖22 − ‖sN‖2 is small if M > N with N large enough. Thus ‖sM − sN‖2 is small for
M,N large, which verifies the Cauchy condition of (sN)∞N=1 in L2(T).

Let s = limN→∞ sN ∈ L2(T). Then ŝ(n) = 〈s, χn〉 = limN→∞〈sN , χn〉 (using continuity
of the inner product, something that follows quickly from the Cauchy-Schwarz inequality). But
〈sN , χn〉 = 0 if N < |n| and 〈sN , χn〉 = F̂ (n) for |n| ≤ N . So limN→∞〈sN , χn〉 = F̂ (n).

Thus ŝ(n) = F̂ (n) for all n ∈ Z. We have F ∈ L1(T) and s ∈ L2(T) ⊂ L1(T). Thus F = s
by Corollary 2.6.5. Hence F ∈ L2(T).

If we do not assume that we have F ∈ L1(T) to begin with, but just assume that we have
scalars an with

∑∞
n=−∞ |an|2 < ∞, then we can define sN(ζ) =

∑N
n=−N anζ

n. We get in the
same way as above that there is a limit F = limN→∞ sN in L2(T). To show that F̂ (n) = an for
each n ∈ Z, use F̂ (n) = 〈F, χn〉 = limN→∞〈SN , χn〉 where χn(ζ) = ζn. (This is by continuity
of the inner product on L2(T).) But 〈SN , χn〉 = an once N > |n| by orthonormality of the χn
and hence the limit is an. That is F̂ (n) = an.

2.6.9 Corollary (Riemann Lebesgue lemma). If F ∈ L1(T), then lim|n|→∞ F̂ (n) = 0.

Proof. We have F = limN→∞ σNF in L1(T), or in other terms limN→∞ ‖σNF − F‖1 = 0 by
Fejér’s theorem (Corollary 2.6.1) applied to B = L1(T). So if ε > 0 is given, then we can find
N so that ‖σNF − F‖1 < ε.
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LetH = F −σNF . Then Ĥ(n) = F̂ (n) for n > N since σNF is a trigonometric polynomial
of degree at most N (and so (̂σNF )(n) = 0 for n > N ). But |Ĥ(n)| ≤ ‖H‖1 < ε for all n.

Thus |F̂ (n)| = |Ĥ(n)| < ε for n > N .

2.6.10 Remark. We cannot have uniform convergence of σNF to F unless F ∈ C(T) because
the σNF are trigonometric polynomials, so that σNF ∈ C(T), and uniform limits of continuous
functions are continuous.

But we can have pointwise converegence in some cases, that is limN→∞ σNF (ζ) = F (ζ)
for all ζ ∈ T (or for almost all ζ). For instance we say that F (ζ) has a jump discontinuity at
ζ = e2πix0 if both one-sided limits

f(x±0 ) = lim
h→0+

F (e2πi(x0±h))

exist. In this case, taking f̌(x0) = (f(x+0 ) + f(x−0 ))/2 we have that f(x) = F (e2πix) satisfies

lim
h→0+

∫ h

0

∣∣∣∣f(x0 + τ) + f(x0 − τ)

2
− f̌(x0)

∣∣∣∣ dτ = 0 (2.6.1)

2.6.11 Theorem. If F ∈ L1(T), f(x) = F (e2πix) and x0 ∈ R is a point where there exists a
value f̌(x0) ∈ C satisfying (2.6.1), then

lim
N→∞

σNF (e2πix0) = f̌(x0)

Proof. We will not give this. See Y. Katznelson, An introduction to Harmonic Analysis (Dover
edition, 1976), p. 20, where it is attributed to Lebesgue.
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A Appendix

A.1 General measures and Fubini’s theorem
A.1.1 Definition (MA2224 Definition 3.1.2). If X is a set, then a collection Σ of subsets of X is
called a σ-algebra of subsets of X if it satisfies

(σAlg-1) ∅ ∈ Σ

(σAlg-2) E ∈ Σ⇒ X \ E ∈ Σ

(σAlg-3) E1, E2, . . . ∈ Σ implies
⋃∞
n=1En ∈ Σ

The pair (X,Σ) is then called a measurable space.

A.1.2 Definition (similar to MA2224 Definition 3.2.1). If (X,Σ) is a measurable space, then a
function f : X → R is called Σ-measurable if for each a ∈ R

{x ∈ X : f(x) ≤ a} = f−1((−∞, a]) ∈ Σ.

A.1.3 Definition (MA2224 Definition 3.1.3). If (X,Σ) is a measurable space and µ : Σ→ [0,∞]
is a function, then we call µ a measure on Σ if it satisfies

(Meas1) µ(∅) = 0

(Meas2) µ is countably additive, that is wheneverE1, E2, . . . ∈ Σ are disjoint, then µ (
⋃∞
n=1En) =∑∞

n=1 µ(En).

The triple (X,Σ, µ) is then called a measure space.

A.1.4 Definition. A function f : X → R is called a simple function if the range f(X) is a finite
set.

If (X,ΣX) is a measurable space, then we have also measurable simple functions f : X → R,
that is simple functions that are measurable.

A.1.5 Definition. If (X,Σ, µ) is a measurable space and f : X → [0,∞) is a (nonnegative)
measurable simple function with range f(X) = {y1, y2, . . . , yn}, then the Lebesgue integral∫
X
f dµ is defined as

n∑
j=1

yjµ(f−1({yj})

A.1.6 Definition. If (X,Σ, µ) is a measurable space and f : X → [0,∞) is a (nonnegative)
measurable function then the Lebesgue integral

∫
X
f dµ is defined as∫

X

f dµ = sup

{∫
X

s dµ : s simple measurable and 0 ≤ s(x) ≤ f(x)∀x ∈ X
}
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A.1.7 Definition. If (X,Σ, µ) is a measurable space and f : X → R is a measurable function f
is called integrable if

∫
X
|f | dµ <∞. If f is integrable then

∫
X
f dµ is defined as∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ

where f+, f− : X → R are defined by

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).

A.1.8 Definition. If (X,Σ) is a measurable space and f : X → C is a function, then f is called
measurable if Re f and Im f are both measurable (R-valued functions on X).

If (X,Σ, µ) is a measure space and f : X → C is a function, then f is called integrable if
Re f and Im f are both integrable (equivalently if f is measurable and

∫
X
|f | dµ <∞) and then

we define ∫
X

f dµ =

∫
X

Re f dµ+ i

∫
X

Im f dµ

A.1.9 Example. If (X, d) is a metric space and Σ is a σ-algebra of subsets of X that contains all
the open sets, then every continuous f : X → C is measurable.

Proof. Then u = Re f : X → R is continuous and for each a ∈ R, u−1((−∞, a]) is closed
(as the inverse image of a closed set under a continuous function). The complement X \
u−1((−∞, a]) is open, hence in Σ by hypothesis and so u−1((−∞, a]) ∈ Σ by the definition
of a σ-algebra.

Similarly for v = Im f .

A.1.10 Definition. If (X,Σ, µ) is a measurable space and P (x) is a statement about x ∈ X that
may be true or false for each x ∈ X , we say that P (x) holds for almost every x ∈ X (strictly for
µ-almost every x ∈ X) if there is a set E ∈ Σ with µ(E) = 0 such that

{x ∈ X : P (x) is false} ⊆ E

A.1.11 Definition. If (X,ΣX) and (Y,ΣY ) are measurable spaces, then a subset of X×Y of the
form

A×B (A ∈ ΣX , B ∈ ΣY )

is called a measurable rectangle in X × Y .
The smallest σ-algebra of subsets ofX×Y that contains all measurable rectangles is denoted

ΣX × ΣY .

A.1.12 Theorem. If (X,ΣX , µX) and (Y,ΣY , µY ) are measure spaces, then there is a measure
λ on (X × Y,ΣX × ΣY ) called the product measure with the properties

(PM1) if A×B is a measurable rectangle in X × Y , then λ(A×B) = µX(A)µY (B)
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(PM2) if Q ∈ ΣX × ΣY and

Qx = {y ∈ Y : (x, y) ∈ Q}, Qy = {x ∈ X : (x, y) ∈ Q}

then Qx ∈ ΣY ∀x ∈ X and Qy ∈ ΣX∀y ∈ Y .

(PM3) if Q ∈ ΣX × ΣY and
φ(x) = µY (Qx), ψ(y) = µX(Qy)

then φ is measurable on (X,ΣX), ψ is measurable on (Y,ΣY ) and

λ(Q) =

∫
X

φdµX =

∫
Y

ψ dµY

A.1.13 Theorem (Fubini’s theorem). Let (X,ΣX , µX) and (Y,ΣY , µY ) be measure spaces, λ
the product measure on X ×Y and f : X ×Y → C a function which is measurable with respect
to ΣX × ΣY .

Then x 7→ f(x, y) is measurable (with respect to (X,ΣX)) for each y ∈ Y and y 7→ f(x, y)
is measurable (with respect to (Y,ΣY )) for each x ∈ X .

If

φ∗(x) =

∫
y∈Y
|f(x, y)| dµY (y) <∞

for almost every x ∈ X , and if
∫
X
φ∗ dµX <∞, then f is integrable.

If f is integrable, then φ∗(x) < ∞ for almost every x ∈ X , φ(x) =
∫
y∈Y f(x, y) dµY (y)

defines an integrable function on X (where we take φ(x) = 0 when φ∗(x) =∞) and∫
X×Y

f dλ =

∫
X

φ dµX =

∫
x∈X

(∫
y∈Y

f(x, y) dµY (y)

)
dµX(x)

Similar statements hold with the rôles of X and Y reversed and in particular, if f is inte-
grable, then ∫

X×Y
f dλ =

∫
y∈Y

(∫
x∈X

f(x, y) dµX(x)

)
dµY (y)

For proofs, see W. Rudin, Real and complex analysis, McGraw-Hill (1974) [Chapter 7]
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A.2 Facts about L1

We need to know that L1(T) is complete in the norm ‖ · ‖1 and that this is also true about L1[0, 1]
(which is the same space up to a change of variables in our definition) and L1(R).

We will also need to know that C(T) ⊆ L1(T) is dense and that Cc(R) ⊆ L1(R) is dense.
(Recall that a subset of a metric space is called dense if its closure is the whole space.)

Here we outline how these are proved.

A.2.1 Definition. If (E, ‖ · ‖) is a normed space then a series in E is just a sequence (xn)∞n=1 of
terms xn ∈ E.

We say that the series converges inE if the sequence of partial sums has a limit — limn→∞ sn =
limn→∞

∑n
j=1 xj exists in E, or there exists s ∈ E so that

lim
n→∞

∥∥∥∥∥
(

n∑
j=1

xj

)
− s

∥∥∥∥∥ = 0

We say that a series
∑∞

n=1 xn is absolutely convergent if
∑∞

n=1 ‖xn‖ <∞.

A.2.2 Lemma. Let (X, d) be a metric space in which each Cauchy sequence has a convergent
subsequence. Then (X, d) is complete.

Proof. Omitted.

A.2.3 Proposition. Let (E, ‖·‖) be a normed space. ThenE is a Banach space (that is complete)
if and only if each absolutely convergent series

∑∞
n=1 xn of terms xn ∈ E is convergent in E.

Proof. Assume E is complete and
∑∞

n=1 ‖xn‖ < ∞. Then the partial sums of this series of
positive terms

Sn =
n∑
j=1

‖xj‖

must satisfy the Cauchy criterion. That is for ε > 0 given there is N so that |Sn− Sm| < ε holds
for all n,m ≥ N . If we take n > m ≥ N , then

|Sn − Sm| =

∣∣∣∣∣
n∑
j=1

‖xj‖ −
m∑
j=1

‖xj‖

∣∣∣∣∣ =
n∑

j=m+1

‖xj‖ < ε.

Then if we consider the partial sums sn =
∑n

j=1 xj of the series
∑∞

n=1 xn we see that for n >
m ≥ N (same N )

‖sn − sm‖ =

∥∥∥∥∥
n∑
j=1

xj −
m∑
j=1

xj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥ ≤
n∑

j=m+1

‖xj‖ < ε.

It follows from this that the sequence (sn)∞n=1 is Cauchy in E. As E is complete, limn→∞ sn
exists in E and so

∑∞
n=1 xn converges.
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For the converse, assume that all absolutely convergent series in E are convergent. Let
(un)∞n=1 be a Cauchy sequence in E. Using the Cauchy condition with ε = 1/2 we can find
n1 > 0 so that

n,m ≥ n1 ⇒ ‖un − um‖ <
1

2
.

Next we can (using the Cauchy condition with ε = 1/22) find n2 > 1 so that

n,m ≥ n2 ⇒ ‖un − um‖ <
1

22
.

We can further assume (by increasing n2 if necessary) that n2 > n1. Continuing in this way we
can find n1 < n2 < n3 < · · · so that

n,m ≥ nj ⇒ ‖un − um‖ <
1

2j
.

Consider now the series
∑∞

j=1 xj =
∑∞

j=1(unj+1
− unj). It is absolutely convergent because

∞∑
j=1

‖xj‖ =
∞∑
j=1

‖unj+1
− unj‖ ≤

∞∑
j=1

1

2j
= 1 <∞.

By our assumption, it is convergent. Thus its sequence of partial sums

sJ =
J∑
j=1

(unj+1
− unj) = unJ+1

− un1

has a limit in E (as J →∞). It follows that

lim
J→∞

unJ+1
= un1 + lim

J→∞
(unJ+1

− un1)

exists in E. So the Cauchy sequence (un)∞n=1 has a convergent subsequence. By Lemma A.2.2
E is complete.

A.2.4 Theorem. (L1[0, 1], ‖ · ‖1) is a Banach space.

Proof. We have discussed the fact that it is a normed space earlier.
To show completeness, we use Proposition A.2.3. If

∑∞
n=1 ‖fn‖1 <∞, let

h(x) = lim
N→∞

N∑
n=1

|fn(x)| (x ∈ [0, 1])

with the understanding that h(x) ∈ [0,+∞]. By the monotone convergence theorem∫
[0,1]

h(x) dµ(x) = lim
N→∞

∫
[0,1]

N∑
n=1

|fn(x)| dµ(x)

= lim
N→∞

N∑
n=1

∫
[0,1]

|fn(x)| dµ(x) = lim
N→∞

N∑
n=1

‖fn‖1

=
∞∑
n=1

‖fn‖1 <∞
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It follows that h(x) < ∞ almost everywhere on [0, 1] and so we can define f(x) by taking
f(x) =

∑∞
n=1 fn(x) when h(x) <∞ (and say f(x) = 0 if h(x) =∞).

This f(x) will be measurable and integrable because |f(x)| ≤ h(x) (and so f ∈ L1[0, 1]).
We also have ∣∣∣∣∣f(x)−

N∑
n=1

fn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|fn(x)| ≤ h(x)

for each x. The dominated convergence theorem then implies that

lim
N→∞

∥∥∥∥∥f −
N∑
n=1

fn

∥∥∥∥∥
1

= lim
N→∞

∫
[0,1]

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣ dµ(x)

=

∫
[0,1]

lim
N→∞

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣ dµ(x) = 0

Thus each absolutely convergent series in L1[0, 1] converges and so the space is complete (by
Proposition A.2.3).

A.2.5 Remark. The same proof works for L1(R).

A.2.6 Theorem (Lusin’s theorem). Suppose that f : [0, 1]→ C is measurable andM = supx∈[0,1] |f(x)| <
∞. If ε > 0 is arbitrary, then there is a continuous h : [0, 1]→ C such that

(a) µ({x ∈ [0, 1] : f(x) 6= h(x)}) < ε, and

(b) supx∈[0,1] |h(x)| ≤M .

A proof can be found in W. Rudin, Real and complex analysis, McGraw-Hill (1974) [Theo-
rem 2.23].

A.2.7 Corollary. C(T) ⊆ L1(T) is dense (or, more formally, the equivalence classes in L1(T)
which have a continuous element are dense).

Proof. We will show instead that CP [0, 1] = {f ∈ C[0, 1] : f(0) = f(1)} is dense in L1[0, 1]
(which is equivalent in view of our definitions 1.1.18, 1.2.23 and 2.2.6).

Although there is a distinction between CP [0, 1] and C[0, 1], this distinction turns out to
be not important in this proof, because C[0, 1] is contained in the closure of CP [0, 1] in the
‖ · ‖1 norm. If f ∈ C[0, 1] we can define fn ∈ CP [0, 1] by saying that fn(x) = f(x) for
0 ≤ x ≤ 1− (1/n) and fn(x) is linear on the remainder, matching f(0) at x = 1, that is

fn(x) =

(
1−

x− 1 + 1
n

1
n

)
f(1− 1

n
) +

(
x− 1 + 1

n
1
n

)
f(0) (1− 1

n
< x ≤ 1).

Then ‖fn − f‖1 =
∫ 1

1−1/n |fn(x)− f(x)| dx→ 0 as n→∞.
Thus if we establish that C[0, 1] is dense in L1[0, 1], it will follow that CP [0, 1] is dense.
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If we consider first f ∈ L1[0, 1] (or a representative f ∈ L1[0, 1] of its almost everywhere
equivalence class) such that M = supx∈[0,1] |f(x)| = M < ∞, then we can apply Lusin’s
theorem A.2.6 with ε = 1/n to find fn ∈ C[0, 1] with ‖fn‖∞ ≤ M and µ({x : f(x) 6=
fn(x)}) < 1/n. Then

‖fn − f‖1 =

∫
[0,1]

|fn(x)− f(x)| dµ(x)

=

∫
{x:f(x)6=fn(x)}

|fn(x)− f(x)| dµ(x)

≤ µ({x : f(x) 6= fn(x)})2M <
2M

n

(using |fn(x)− f(x)| ≤ |fn(x)|+ |f(x)| ≤ 2M ).
For general f ∈ L1[0, 1], let hn(x) = f(x) for |fn(x)| ≤ n and hn(x) = 0 for |fn(x)| ≥ n.

Then hn ∈ L1[0, 1] and hn is in the closure of C[0, 1] by the previous paragraph. We have

‖hn − f‖1 =

∫
[0,1]

|hn(x)− f(x)| dµ(x)

=

∫
{x:|f(x)|≥n}

|hn(x)− f(x)| dµ(x)

=

∫
{x:|f(x)|≥n}

|f(x)| dµ(x)

=

∫
[0,1]

χ{y:|f(y)|≥n}(x)|f(x)| dµ(x)

→ 0 as n→∞

by the dominated convergence theorem. (Here the notation χE denotes the characteristic function
of a subset E.) It follows that f is in the closure of C[0, 1], hence that C[0, 1] is dense.

A.2.8 Definition. If (X, d) is a metric space, the a completion of (X, d) is a complete met-
ric space (Y, ρ) together with a distance-preserving map α : X → Y (i.e. one that satisfies
d(x1, x2) = ρ(α(x1), α(x2)) for x1, x2 ∈ X) such that α(X) is dense in Y .

A.2.9 Remark. For each y ∈ Y there is a sequence (xn)∞n=1 such that limn→∞ α(xn) = y.
The sequence (xn)∞n=1 must be a Cauchy sequence and if (x′n)∞n=1 is another choice of such a
sequence then limn→∞ d(xn, x

′
n) = 0. This latter relation is an equivalence relation on Cauchy

sequences inX and the points of Y must correspond bijectively to equivalence classes of Cauchy
sequences in X . This allows one to construct a completion and to show that all completions of
X are ‘essentially’ the same.

One often treats the completion Y as ‘containing’ the original metric space, so that the map
α becomes inclusion.

A.2.10 Corollary. L1(T) with the distance arising from the norm ‖·‖1 is the completion of C(T)
with the same distance.
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L1[0, 1] is the completion of CP [0, 1] and of C[0, 1] (in the distance arising from the norm
‖ · ‖1).

A.2.11 Theorem. (L1(R), ‖ · ‖1) is a Banach space.
Cc(R) is dense in L1(R) and L1(R) is the completion of Cc(R) (in the distance arising from

the norm ‖ · ‖1).

Proof. The proof of completion is basically identical to that of Theorem A.2.4.
The proof that Cc(R) is dense relies on Lusin’s theorem more or less as in Corollary A.2.7

but one has to reduce to L1[−N,N ] and continuous functions supported in [−N,N ]. This is not
hard because if f ∈ L1(R), then

lim
N→∞

‖fχ[−N,N ] − f‖1 = 0

by the dominated convergence theorem.
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A.3 Facts about L2

We defined L2(T) in Examples 2.4.2. Here we repeat the definition a little more formally. Recall
that K denotes one of R or C. We usually deal with the case K = C but the definitions and
results in this section are also valid over R, with the same proofs.

A.3.1 Definition. The space L2[0, 1] is the space of measurable f : [0, 1]→ K such that∫
[0,1]

|f(x)|2 dµ(x) <∞

We define a ‘magnitude’ ‖f‖2 for L2[0, 1] as the square root of the above integral.
The space L2(T) is the space of measurable F : T → K such that f(x) = F (e2πix) is in

L2[0, 1]. We define ‖F‖2 = ‖f‖2.
The space L2(R) is the space of measurable f : R→ K such that∫

R
|f(x)|2 dµ(x) <∞

We define ‖f‖2 for f ∈ L2(R) as ‖f‖2 =
(∫

R |f |
2 dµ

)1/2.
A.3.2 Lemma. If (V, 〈·, ·〉) is an inner product space, then ‖v‖ =

√
〈v, v〉 defines a norm on V .

Proof. We take this as familiar. (See Lemma 1.1.4.6.) The triangle inequality follows from
the Cauchy-Schwarz inequality |〈v, w〉| ≤

√
〈v, v〉

√
〈w,w〉, which holds for v, w ∈ V . The

inequality follows from 〈v + λw, v + λw〉 ≥ 0 by choosing a suitable λ ∈ K.

A.3.3 Proposition. L2([0, 1]) is vector space over K and ‖ · ‖2 is a seminorm on the space.
The associated normed space L2([0, 1]) = L2([0, 1])/{f : ‖f‖2 = 0} is an inner product

space with inner product given by

〈f, h〉 =

∫
[0,1]

f(x)h(x) dµ(x)

Proof. It is quite straightforward that λf ∈ L2([0, 1]) if f ∈ L2([0, 1]) and λ ∈ K, also that
‖λf‖2 = |λ|‖f‖2.

If f, h ∈ L2([0, 1]), then

|f(x)h(x)| ≤ 1

2
(|f(x)|2 + |h(x)|2)

and it follows that f(x)h(x) is integrable. As

|f(x) + h(x)|2 = (f(x) + h(x))(f(x) + h(x)) = |f(x)|2 + f(x)h(x) + h(x)f(x) + |h(x)|2

it follows then that |f + h|2 is integrable and f + h ∈ L2([0, 1]). So L2([0, 1]) is a vector space.
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The subset {f ∈ L2([0, 1]) : ‖f‖2 = 0} coincides with those f ∈ L2([0, 1]) such that
f(x) = 0 almost everywhere and it can be checked that this is a vector subspace. So L2[0, 1] is a
vector space quotient, hence a vector space.

We also have observed that the integral giving 〈f, h〉 makes sense for f, h ∈ L2([0, 1]).
It is easy to check that the function 〈·, ·〉 satisfies the properties of an inner product, except

that 〈f, f〉 = 0 only implies that f(x) = 0 almost everywhere. It then follows as in the proof
of Lemma A.3.2 that ‖f‖2 =

√
〈f, f〉 defines a seminorm on L2([0, 1]) and that the analogue of

the Cauchy-Schwarz inequality |〈f, h〉| ≤ ‖f‖2‖h‖2 holds for f, h ∈ L2([0, 1]).
If f(x) = f1(x) almost everywhere and h(x) = h1(x) almost everywhere, then f(x)h(x) =

f1(x)h1(x) almost everywhere and so 〈f, h〉 can be defined for almost everywhere equivalence
classes of f, h ∈ L2([0, 1]), that is for f, h ∈ L2([0, 1]). Then (L2([0, 1]), 〈·, ·〉) is an inner
product space and ‖f‖2 =

√
〈f, f〉 is a norm on L2[0, 1].

A.3.4 Theorem. (L2[0, 1], ‖ · ‖2) is a Banach space.

Proof. Following the lines of proof of Theorem A.2.4 we take an absolutely convergent series∑∞
n=1 fn, where fn ∈ L2[0.1] for each n and

∑∞
n=1 ‖fn‖2 <∞.

Let

h(x) =
∞∑
n=1

|fn(x)| ∈ [0,∞].

By the monotone convergence theorem

∫
[0,1]

h(x)2 dµ(x) = lim
N→∞

∫
[0,1]

(
N∑
n=1

|fn(x)|

)2

dµ(x)

= lim
N→∞

∥∥∥∥∥
N∑
n=1

|fn|

∥∥∥∥∥
2

2

≤ lim
N→∞

(
N∑
n=1

‖fn‖2

)2

where we have used the triangle inequality for ‖ · ‖2 plus ‖|fn|‖2 = ‖fn‖2.
Now proceed almost exactly as in proof of Theorem A.2.4 by taking f(x) =

∑∞
n=1 fn(x)

almost everywhere. From |f(x)| ≤ h(x) we get f ∈ L2[0, 1] and then use the dominated

convergence theorem to show limN→∞

∥∥∥f −∑N
n=1 fn

∥∥∥2
2

= 0.

A.3.5 Corollary. L2(T) is a Banach space.

A.3.6 Theorem. CP [0, 1] is dense in L2[0, 1].

Proof. This follows from Lusin’s theorem in a way that is very similar to the proof of Corol-
lary A.2.7
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A.3.7 Corollary. C(T) ⊆ L2(T) is dense (or, more formally, the equivalence classes in L2(T)
which have a continuous element are dense).

L2(T) with the distance arising from ‖ · ‖2 is the completion of C(T) with the same distance.

Proof. This is really just a restatement of Corollary A.3.6 and Theorem A.3.4.

We can also show, as in Theorem A.2.11, that there is are similar results for functions on R.

A.3.8 Theorem. (L2(R), ‖ · ‖2) is a Banach space.
Cc(R) is dense in L2(R) and L2(R) is the completion of Cc(R) (in the distance arising from

the norm ‖ · ‖2).

Changes 2/11/2017: Fix typos in Definition A.3.1. Add remark in proof of Lemma A.3.2. Re-
move obsolete Remark before Proposition 2.4.7.

Changes 27/11/2017: Add word Banach in Definition 2.4.1. Add remark in Definition 2.4.3.
Fix comment following Definition 2.5.1. Clarify proof of Proposition 2.5.2*2 Fix typo in Corol-
lary 2.6.5. Fix typo in Definition A.1.7.
Richard M. Timoney (November 27, 2017)
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