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Chapter 1: Examples for Fourier analysis
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1.1 Review: Fourier series
We will take the point of view that Fourier analysis makes sense for Locally compact abelian
groups but first we will consider a few examples which will be developed more fully later.

The basic idea of Fourier was that all functions could be made up from a superposition of
sines and cosines. The easiest situation to describe is where we deal with periodic functions and
the case of a general period L can be reduced to the that have period 1 by a change of variable
that re-scales the independent variable. However, it is also common to use L = 2π and we review
that first.

1.1.1 Fourier sine and cosine series

The idea of Fourier was that all functions f(θ) could be built up from cosines and sine. We will
look at the case or periodic functions where we come up with Fourier series (but there is also a
theory of Fourier transforms applicable to many [non periodic] functions f : R→ R).

So the idea is that we can build up f(θ) by combining cos(nθ) and sin(nθ) for different
n ∈ Z. Because cos is even cos(−nθ) = cos(nθ) and so there is nothing to be gained by
allowing n < 0. For n = 0 we get cos 0 = 1, the constant function and we do keep that. As sin
is odd sin(−nθ) = − sin(nθ) and again we stick to n positive. Now for n = 0 we get sin 0 ≡ 0
and we don’t keep that.

So the idea of Fourier was to consider sums

A0 +
∞∑
n=1

(An cos(nθ) +Bn sin(nθ)) (1.1.1)

1
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We will gloss over lots of details for the moment and arrive at a plausible strategy for finding
suitable An’s and Bn’s starting from f . Later we will return to investigate whether (on in what
circumstances) the sum (1.1.1) converges in any sense and whether it give the right answer f(θ).

As all the terms we are looking at in (1.1.1) are 2π-periodic, it seems we should restrict
ourselves to functions f that satisfy f(θ + 2π) ≡ f(θ). We can then consider and inner product
for functions

〈f, g〉 =

∫ 2π

0

f(θ)g(θ) dθ

[Warning: we will change to dealing with C-valued functions very soon and then the right thing
will be 〈f, g〉 =

∫ 2π

0
f(θ)g(θ) dθ.] It turns out that most of the inner products between the

building block functions cos(nθ) and sin(nθ) are zero. For instance, if n 6= m

〈cos(nθ), cos(mθ)〉 =

∫ 2π

0

cos(nθ) cos(mθ) dθ

=

∫ 2π

0

1

2
(cos((n+m)θ) + cos((n−m)θ)) dθ

=

[
1

2

(
1

n+m
sin((n+m)θ) +

1

n−m
sin((n−m)θ))

)]2π
0

= 0

On the other hand, for n = m > 0

〈cos(nθ), cos(nθ)〉 =

∫ 2π

0

cos2(nθ) dθ

=

∫ 2π

0

1

2
(cos(2nθ) + 1) dθ

=

[
1

2

(
1

2n
sin(2nθ) + θ

)]2π
0

= π

nut for n = 0 we get 〈1, 1〉 = 2π. For the sin inner products we get 〈sin(nθ), sin(mθ)〉 = 0 if
n ≥ m but π if n = m > 0 and the mixed inner products 〈sin(nθ), cos(mθ)〉 = 0 for n > 0,
m ≥ 0.

If we use these facts and take a cavalier attitude to any technical difficulties that might arise,
if f(θ) is equal to the series (1.1.1), then 〈f(θ), cos(mθ)〉 should be

A0〈1, cos(mθ)〉+
∞∑
n=1

(An〈cos(nθ), cos(mθ)〉+Bn〈sin(nθ)), cos(mθ)〉

So 〈f(θ), cos(mθ)〉 = Amπ if m > 0 and = a0(2π) if m = 0. Similarly 〈f(θ), sin cos(mθ)〉 =
Bmπ for m > 0.

What we can do then is define the Fourier cos - sin series for f to be (1.1.1) with

An =

{
1
π

∫ 2π

0
f(θ) cos(nθ) dθ for n > 0

1
2π

∫ 2π

0
f(θ)dθ for n = 0



MA342A 2017–18 3

and

Bn =
1

π

∫ 2π

0

f(θ) sin(nθ) dθ (n > 0).

Then our next question could be whether the series (1.1.1) now adds up to f is some reason-
able sense?

Before that, we should maybe take care of what we mean by those integrals that give the
coefficients An and Bn. One approach is to take f : [0, 2π]→ R to be continuous and we would
probably insist also that f(0) = f(2π). With f(0) = f(2π) we can repeat the values f(θ) for
0 ≤ θ ≤ 2π on each interval 2(n − 1)θ ≤ θ ≤ 2nθ (n ∈ Z) and then we have f : R → R
continuous and 2π-periodic. For these continuous f we can use the Riemann integral.

More generally we could consider Lebesgue integrable f , meaning ones which are Lebesgue
measurable on [0, 2π] and have

∫ 2π

0
|f(θ)| dθ < ∞. [Recall f : [0, 2π] → R is Lebesgue mea-

surable if {θ ∈ [0, 2π] : f(θ) ≤ a} is always a Lebesgue measurable set, for each a ∈ R. Also
it is quite hard to come across non-measurable functions so that this measurability assumption
is not usually a difficulty. If f is measurable, then |f(θ)| is measurable and never negative. So
it is possible to define

∫ 2π

0
|f(θ)| dθ always if we allow ∞ as a value. To get

∫ 2π

0
f(θ) dθ we

take
∫ 2π

0
f+(θ) dθ −

∫ 2π

0
f−(θ) dθ and we need at least one of

∫ 2π

0
f±(θ) dθ to be finite for this

to make any sense. We say f is integrable if both are finite and then
∫ 2π

0
f(θ) dθ ∈ R.]

If f is integrable then so are f(θ) cos(nθ) for all n because they are certainly measurable
and |f(θ) cos(nθ)| ≤ |f(θ)| ⇒

∫ 2π

0
|f(θ) cos(nθ)| dθ ≤

∫ 2π

0
|f(θ)| dθ < ∞. Similarly the

f(θ) sin(nθ) are integrable and we are not in any trouble defining the An and Bn.
Since changing integrands on sets of θ’s of measure zero does not affect the Lebesgue inte-

gral, it does not really make sense to have f(0) = f(2 pi) as a restriction any more. Or, we could
have it but it can’t really help.

1.1.2 Complex Fourier series

From now on, we will consider a different approach because I find it more agreeable. We will
take period L = 1 instead of 2π and use complex exponentials instead of cos and sin. We can
arrive at L = 1 by a change of variable θ = 2πx. Then we would have f : [0, 1] → R, and
replace (1.1.1) by

A0 +
∞∑
n=1

(An cos(2πnx) +Bn sin(2πnx)) (1.1.2)

where now

An =

{
2
∫ 1

0
f(x) cos(2πnx) dx for n > 0∫ 1

0
f(x)dx for n = 0,

Bn = 2

∫ 1

0

f(x) sin(2πnx) dx (n > 0).

If we are considering continuous f we would usually insist that f(0) = f(1) or alternatively
consider f : R→ R that satisfies f(x+ 1) = f(x).
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So far a small change and only a slight improvement as there is a different formula for A0

still. Our next step is to move to complex exponentials

eiθ = cos θ + i sin θ

(de Moivre’s theorem), or

e2πinx = cos(2πnx) + i sin(2πnx)

Since we can add that to
e−2πinx = cos(2πnx)− i sin(2πnx)

to get

e2πinx + e−2πinx = 2 cos(2πnx)⇒ cos(2πnx) =
e2πinx + e−2πinx

2

and subtract to get

sin(2πnx) =
e2πinx − e−2πinx

2i
,

it follows that everything we can express in terms of the cosines and sines (cos(2πnx) (n ≥ 0)
and sin(2πnx) (n > 0)) can equally well be expressed in terms of the building blocks

φn(x) = e2πinx (n ∈ Z).

We get then to this definition

1.1.2.1 Definition (Subject to future explanation). For f : [0, 1] → C integrable, we define the
Fourier coefficients (complex) of f to be

f̂(n) =

∫ 1

0

f(x)e−2πinx dx (n ∈ Z)

and the (complex) Fourier series for f to be

∞∑
n=−∞

f̂(n)e2πinx (1.1.3)

We will then be left with these questions:

Q1. How to make sense of integrals of complex functions? (This part is rather easy.)

Q2. Does the series converge in any sensible way? and is the sum f?

1.1.2.2 Example (Exercise). (i) Express f(x) = 3 cos(4πx) + 7 cos(6πx)− sin(2πx) in terms
of the complex exponentials φn(x) (n ∈ Z).

(ii) Express f(x) = φ0(x) + (3 + 2i)φ1(x) + (3− 2i)φ−1(x) in terms of sines and cosines.
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1.1.3 Complex integrals

As mentioned above, the interpretation of integrals of C-valued integrands f : [0, 1, ]→ C is not
difficult. We take u(x) = Re f(x) and v(x) = Im f(x) so that f(x) = u(x) + iv(x) and then we
define ∫ 1

0

f(x) dx =

∫ 1

0

u(x) dx+ i

∫ 1

0

v(x) dx.

But that leaves us with two possible ways to interpret these integrals of R-valued functions:

1. We can use the Riemann integral and require u and v (or equivalently f ) to be continuous.

2. We can use the Lebesgue integral and require u and v to be Lebesgue integrable.

As discussed above, u then has toe be Lebesgue measurable and
∫ 1

0
|u(x)| dx <∞. Same

for v. If u and v are measurable then so is |f | as |f(x)| =
√

(u(x))2 + (v(x))2. So∫ 1

0
|f(x)| dx makes sense but might be∞. However, as |f(x)| ≤ |u(x)|+ |v(x)| we must

have
∫ 1

0
|f(x)| dx <∞ if u and v are integrable. As |u(x)| ≤ |f(x)| and |v(x)| ≤ |f(x)|,

then we can summarise what is needed as

• u and v measurable

•
∫ 1

0
|f(x)| dx <∞

For calculations we will usually fall back on the Riemann theory and the fact that the Lebesgue
integral agrees with the Lebesgue integral for continuous integrands. To compute the Rie-
mann integral

∫ 1

0
u(x) dx we want an antiderivative U(x) (with U ′(x) ≡ u(x)) and of course∫ 1

0
u(x) dx = [U(x)]10 = U(1)− U(0). Same for v and an antiderivative V .
We can make lief easier if we look at derivatives F ′(x) of C-valued functions of a real vari-

able. We can either

• say that F (x) = U(x) + iV (x) is differentiable if U = ReF and V = ImF are both
differentiable and define

F ′(x) = U(x) + iV (x)

or

• we can define

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

(if the limit exists). [We need to modify at the end points of the domain.] (Aside: this is
not what you study in complex analysis — there h is complex but here it is real.)

Whichever way we do it we get the usual basic rules for differentiation of C-valued functions
of x:

• derivative of a sum = the sum of the derivatives
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• constant multiples
d

dx
(λF (x)) = λF ′(x)

if λ ∈ C is constant and F ′(x) exists

• Product rule
d

dx
(F (x)G(x)) = F ′(x)G(x) + F (x)G′(x)

We can check these either by writing both sides out in terms of real and imaginary parts, or by
running through the usual proofs for the R-valued case. (Perhaps we can get away without a
chain rule. If we compose with a real function x = x(t) and consider f(x) = f(x(t)) we are ok,
but for a composition g(f(x) we need complex differentiablity of g to get a normal chain rule,
or to use partial derivatives of g.)

From the product rule (by integrating both sides) we get integration by parts:∫ 1

0

u dv = [uv]10 −
∫ 1

0

v du

where now u and v have become C-valued differentiable functions.
We can also say that if F ′(x) = f(x) and f is continuous, then∫ 1

0

f(x) dx = [F (x)]10 = F (1)− F (0)

as in the R-valued case (because this is just combining the U and V remarks above about∫ 1

0
u(x) dx and

∫ 1

0
v(x) dx into one complex calculation).

1.1.3.1 Lemma.
d

dx
eax = aeax

for a ∈ C.

Proof. Say a = α + iβ in terms of its real and imaginary parts. Then

eax = eαx+iβx = eαxeiβx

and we will use the product rule.
First look at

eiβx = cos(βx) + i sin(βx)

so that
d

dx
eiβx = −β sin(βx) + iβ cos(βx) = iβ(cos(βx) + i sin(βx)) = iβeiβx

(the result we want when a is purely imaginary).
Then, from the product rule,

d

dx
eax =

d

dx
(eαxeiβx) = αeαxeiβx + iβeαxeiβx = (α + iβ)eax = aeax.
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1.1.3.2 Example. For φn(x) = e2πinx, we have

〈φn, φm〉 =

∫ 1

0

φn(x)φm(x) dx =

{
1 if n = m

0 if n 6= m

To verify this we compute∫ 1

0

φn(x)φm(x) dx =

∫ 1

0

e2πinxe−2πimx dx =

∫ 1

0

e2πi(n−m)x dx

If n = m, this is just
∫ 1

0
1 dx = 1 and otherwise we have[

1

2πi(n−m)
e2πi(n−m)x

]1
0

= 0

1.1.4 Formal definitions

When we consider vector spaces, they will often be vector spaces of functions defined on some
set S. V = {f : S → C} is a vector space when we define the vector space operations

V-Op1 sum

(f + g)(s) = f(s) + g(s) for s ∈ S, f, g ∈ V

V-Op2 scalar multiplication

(λf)(s) = λf(s) for s ∈ S, λ ∈ C, f ∈ V

The zero function is the function f(s) ≡ 0. [Fancy notation would be CS for this V .]

1.1.4.1 Definition. C[0, 1] = {f : [0, 1]→ C : f continuous}.
CP [0, 1] = {f : [0, 1]→ C : f continuous and f(0) = f(1)}.

(Aside: C for continuous and P for periodic.)

1.1.4.2 Lemma. C[0, 1] and CP [0, 1] are vector spaces (subspaces of C[0,1], or of V as above
with S = [0, 1]).

1.1.4.3 Definition. An inner product space (also known as a pre-Hilbert space) is a vector space
V over K (= R or C) together with a map

〈·, ·〉 : V × V → K

satisfying (for u, v, w ∈ V and λ ∈ K):

(i) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

(ii) 〈λu, v〉 = λ〈u, v〉
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(iii) 〈v, u〉 = 〈u, v〉

(iv) 〈u, u〉 ≥ 0

(v) 〈u, u〉 = 0⇒ u = 0

Note that it follows from the first 3 properties that:

(i)’ 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

(ii)’ 〈u, λv〉 = λ〈u, v〉

If we have all but property (v) we call it a semi-inner product space.

1.1.4.4 Lemma (Cauchy-Schwarz). If (V, 〈·, ·〉) is an inner product space (or even a semi-inner
product space) and u, v ∈ V , then

|〈u, v〉| ≤
√
〈u, u〉〈v, v〉

Proof. The usual proof starts from 〈u+λv, u+λv〉 ≥ 0, expands that out and chooses a suitable
λ to get the result.

1.1.4.5 Definition. A norm on a vector space V over K (where K can be C or R) is a map
‖ · ‖ : V → R satisfying

(i) ‖v‖ ≥ 0 for v ∈ V

(ii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for u, v ∈ V (triangle inequality)

(iii) ‖λv‖ = |λ|‖v‖ for λ ∈ K and v ∈ V

(iv) ‖v‖ = 0⇒ v = 0

If we have the properties (i), (ii) and (ii), we say we have a seminorm.

1.1.4.6 Lemma. If (V, 〈·, ·〉) is an inner product space, then we can define a norm on V by

‖v‖ =
√
〈v, v〉 (v ∈ V ).

(If we just have a semi-inner product we get a seminorm.)

Proof. The only complicated part to prove is the triangle inequality and that relies on Cauchy-
Schwarz.

1.1.4.7 Example. On C[0, 1] or CP [0, 1] we can define an inner product by

〈f, g〉 =

∫ 1

0

f(x)g(x) dx

There are 3 norms on C[0, 1] or CP [0, 1] that we will be considering:
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a. ‖f‖∞ = supx∈[0,1] |f(x)|

b. ‖f‖2 =
√
〈f, f〉 =

√∫ 1

0
|f(x)|2 dx

c. ‖f‖1 =
∫ 1

0
|f(x)| dx

It is not difficult to check that the above gives an inner product, and then ‖ · ‖2 is the norm
arising from the inner product. It is in fact easy to check that ‖ · ‖∞ and ‖ · ‖1 are norms.

In some sense ‖ · ‖∞ is the appropriate norm to use on C[0, 1] or CP [0, 1] because it makes
the space complete (or a Banach space). In the other norms, we can very quickly get into trouble
because the space is not complete.

1.1.4.8 Definition. If V is a vector space, then an infinite subset S ⊆ V is called linearly inde-
pendent if each finite subset of S is linearly independent, that is if for each choice s1, s2, . . . , sn
of n distinct elements of S (and each possible n ≥ 1) the only linear combination

a1s1 + a2s2 + · · ·+ ansn = 0

is the trivial combination where aj = 0 for 1 ≤ j ≤ n.

1.1.4.9 Example. The function φn(x) = e2πinx (n ∈ Z) are linearly independent in CP [0, 1].

Proof. We take finitely many n’s, say n1, n2, . . . , nk are distinct integers. Suppose

λ1φn1 + λ2φn2 + · · ·+ λkφnk
= 0.

We can choose N large enough that −N ≤ nj ≤ N for 1 ≤ j ≤ k and define

an =

{
λj if n = nj some j
0 otherwise

then we have
a−Nφ−N + a−N+1φ−N+1 + · · ·+ anφN = 0.

We can write that more succinctly as

N∑
n=−N

anφn = 0.

We want to show an = 0 must hold for all n.
Method using inner products. Take inner product with a fixed φm to get〈

N∑
n=−N

anφn, φm

〉
= 〈0, φm〉 = 0.
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That gives
N∑

n=−N

an〈φn, φm〉 = 0

By Example 1.1.3.2, that simplifies to

am1 + 0 = 0⇒ am = 0.

As this hold for all m, we are done.
Method using direct linear algebra. To say that

∑N
n=−N anφn = 0 means that

∑N
n=−N anφn(x) =

0 for each x ∈ [0, 1]. Notice that φn(x) = (φ1(x))n (because e2πinx = (e2πix)n) and so we have

N∑
n=−N

an(φ1(x))n = 0

for all x ∈ [0, 1]. If we pick 2N+1 different x ∈ [0, 1), say xj = j/(2N+1) for j = 0, 1, . . . , 2N
and put ζj = φ1(xj) we have a system of 2N + 1 linear equations

N∑
n=−N

anζ
n
j = 0 (0 ≤ j ≤ 2N)

in 2N + 1 unknowns an (−N ≤ n ≤ N ). In matrix form this can be written
ζ−N0 ζ

−(N−1)
0 · · · ζN0

ζ−N1 ζ
−(N−1)
1 · · · ζNN

...
ζ−N2N ζ

−(N−1)
2N · · · ζN2N



a−N
a−N+1

...
aN

 = 0

The matrix is invertible, or has nonzero determinant because (if we factor ζ−Nj from each row
j + 1)

det


ζ−N0 ζ

−(N−1)
0 · · · ζN0

ζ−N1 ζ
−(N−1)
1 · · · ζNN

...
ζ−N2N ζ

−(N−1)
2N · · · ζN2N

 = (ζ0ζ1 · · · ζ2N)−N det


1 ζ0 ζ20 · · · ζ2N+1

0

1 ζ1 ζ21 · · · ζNN
...
1 ζ2N ζ22N · · · ζ2N+1

2N


and the latter is what is called a Vandermonde determinant, well-known to be nonzero provided
the numbers ζ0, ζ1, . . . , ζ2N are all distinct (which they are in our case).

1.1.4.10 Definition. If (V, 〈·, ·〉) is an inner product space, then u, v ∈ V are called orthogonal
if 〈u, v〉 = 0 (and we may write u ⊥ v).

A subset S ⊆ V is called orthogonal if u ⊥ v whenever u, v ∈ S and u 6= v.
A subset S ⊆ V is called orthonormal if it is orthogonal and satisfies 〈u, u〉 = 1 for each

u ∈ S (or ‖u‖ = 1).
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1.1.4.11 Proposition. Orthonormal subsets S of inner product spaces V are always linearly
independent.

Proof. This is essentially one of the proofs we just gave for Example 1.1.4.9.
If S is finite, so that S = {s1, s2, . . . , sn} for some n ≥ 0, then we consider a linear combi-

nation
v = a1s1 + a2s2 + · · ·+ ansn = 0

Compute 〈v, sj〉 for any j with 1 ≤ j ≤ n and get 0 = 〈v, sj〉 for any j with 1 ≤ j ≤ n and get
0 = 〈v, sj〉 = aj . Thus aj = 0 for 1 ≤ j ≤ n.

In the case of infinite S, the argument is essentially the same except that s1, s2, . . . , sn are
now any n distinct elements of S (rather than the whole of S).

1.1.4.12 Remark. If you examine the argument carefully, n = 0 was allowed in the finite case.
The empty set S = ∅ of vectors is linearly independent in any vector space, either by convention
or by a literal reading of the definition. It is also orthonormal in any inner product space.

1.1.5 Integrable functions

For f ∈ CP [0, 1] we have a neat connection

f̂(n) = 〈f, φn〉 =

∫ 1

0

f(x)e−2πinx dx

between Fourier coefficient and inner products and that seems to suggest strongly that we should
consider Fourier series in the context of inner product spaces. While there is a lot to be said for
that idea (and we will see that later), the most general context where we can make sense of f̂(n)
is for integrable f , as in Definition 1.1.2.1. This leads us to consider this space:

1.1.5.1 Definition. We define

L1([0, 1]) = {f : [0, 1]→ C : f measurable and
∫ 1

0

|f | dx <∞}.

This space is called the space of Lebesgue integrable functions (on [0, 1]).
(We could define an R-valued version but we will concentrate on the C-valued case.)
We also define the magnitude of f ∈ L1([0, 1]) as

‖f‖1 =

∫ 1

0

|f | dµ

1.1.5.2 Lemma. With the usual vector space operations on functions L1([0, 1]) is a vector space
over C.

Also ‖ · ‖1 defines a semi-norm on L1([0, 1]).
This semi-norm is not a norm, that is it does not satisfy ‖f‖1 = 0 only when f = 0. In

fact all we can say is that ‖f‖1 = 0 ⇐⇒ f(x) = 0 holds for almost every x ∈ [0, 1] (or
⇐⇒ µ{x ∈ [0, 1] : f(x) 6= 0} = 0).



12 Chapter 1: Examples for Fourier analysis

Proof. The proof of this is fairly straightforward.
The semi-norm properties are very easy to check and the statement about ‖f‖1 = 0 being

equivalent to f(x) = 0 almost everywhere was discussed in MA2224.

1.1.5.3 Lemma (Properties of Fourier coefficients).

(i) Definition 1.1.2.1 is valid for f ∈ L1([0, 1]) (that is, f(x)e−2πinx is integrable if f is).

(ii) For each n, the nth Fourier coefficient map

f 7→ f̂(n) : L1([0, 1])→ C

is a linear transformation (called a linear functional since the values are in the vector space
of scalars).

(iii)
sup
n∈Z
|f̂(n)| ≤ ‖f‖1

holds for f ∈ L1([0, 1])

(iv) If f, g ∈ L1([0, 1]) have f(x) = g(x) almost everywhere, then f̂(n) = ĝ(n) for all n ∈ Z
(that is, f and g have the same Fourier series).

Proof. (i) We need to know that products of measurable functions are measurable, even in the
C-valued case (where when we say f(x) is measurable we mean that Re f(x) and Im f(x)
are both measurable. This not complicated to show as

f(x)g(x) = (Re f(x) + i Im f(x))(Re g(x) + i Im g(x))

= (Re f(x) Re g(x)− Im f(x) Im g(x)) + i(Re f(x) Im g(x) + Im f(x) Re f(x))

Next |f(x)e−2πinx| = |f(x)| and so f(x)e−2πinx is integrable.

(ii) This means that ̂(f + g)(n) = f̂(n) + ĝ(n) and (̂λf)(n) = λf̂(n) (for f, g ∈ L1([0, 1]) and
λ ∈ C), both of which are easy to see from the integrals.

(iii)

|f̂(n)| =
∣∣∣∣∫

[0,1]

f(x)e−2πinx dµ(x)

∣∣∣∣ ≤ ∫
[0,1]

|f(x)e−2πinx| dµ(x) = ‖f‖1

for each n. That does rely on the triangle inequality in the form
∣∣∣∫ 1

0
f(x) dx

∣∣∣ ≤ ∫ 1

0
|f(x)| dx

(valid for integrable f ). To get the complex version from the real one we can choose λ ∈ C
with |λ| = 1 and

λ

∫ 1

0

f(x) dx
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real and positive. Then∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ =

∣∣∣∣λ∫ 1

0

f(x) dx

∣∣∣∣ = λ

∫ 1

0

f(x) dx =

∫ 1

0

λf(x) dx =

∫ 1

0

Re(λf(x)) dx

The latter integral is then

≤
∫ 1

0

|λf(x)| dx =

∫ 1

0

|f(x)| dx.

From |f̂(n)| ≤ ‖f‖1 for each n ∈ Z we get

sup
n∈Z
|f̂(n)| ≤ ‖f‖1

(iv) If f(x) = g(x) almost everywhere, then f−g is zero almost everywhere and so ‖f−g‖1 =

0 and that implies by the above ̂(f − g)(n) = 0. By linearity, this gives f̂(n) − ĝ(n) =
0⇒ f̂(n) = ĝ(n) (for each n ∈ Z).

1.1.5.4 Remark. Property (iii) is much less than we would need to show any kind of convergence
of the Fourier series

∑∞
n=−∞ f̂(n)e2πinx

1.2 The unit circle
We take a slightly different approach now and consider CP [0, 1] as continuous functions on the
unit circle. This will be an important step for us because the circle is a group under multiplication
of complex scalars, an abelian group. It is also compact in C.

We will use this example to introduce some of the more abstract ideas we will develop later.
When we get to Fourier series on the circle (in Definition 1.3.13) we will be only slightly restating
the classical definition we already recalled in Definition 1.1.2.1.

1.2.1 Notation. T will denote the unit circle {ζ ∈ C : |ζ| = 1}.
(Some books may use S1 instead of T.)
T is a metric space with the (restriction) of the usual absolute value distance d(ζ, η) = |ζ−η|

from C.
C(T) means the space {F : T→ C : F continuous} of continuous complex-valued functions

on T. [We try to use F for functions on the circle, lower case f for functions on line.]

1.2.2 Definition. A group is a set G with a binary operation G × G → G satisfying various
axioms. If we write the binary operation as a product gh for g, h ∈ G, the axioms are

(G1) gh ∈ G for g, h ∈ G

(G2) (associative law) (gh)k = g(hk) for g, h, k ∈ G
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(G3) (identity element) there is e ∈ G such that eg = g and ge = g hold for each g ∈ G

(G4) (existence of inverses) For each g ∈ G there is an inverse element h ∈ G such that gh =
e = hg.

The inverse of g ∈ G is unique and written g−1.
A group G is called abelian if gh = hg holds for each g, h ∈ G. (Abelian groups are

sometimes written using additive notation, so that g + h replaces gh, the identity element is
written 0 and −g replaces g−1.)

A subset H ⊆ G of a group G is called a subgroup if it forms a group using the same
operation as G (restricted to H). Since H cannot be empty (as it has to have its own identity) we
can show that a subset H ⊆ G is a subgroup if and only if it satisfies

(SG1) H 6= ∅

(SG2) h, k ∈ H ⇒ hk−1 ∈ H .

(We can also write (SG1) as e ∈ H because (SG2) tells us that h ∈ H ⇒ e = hh−1 ∈ H (and
(SG1) says ∃h ∈ H). And (SG2) can be written in a more long winded way as h, k ∈ H ⇒
hk ∈ H and k ∈ H ⇒ k−1 ∈ H .)

The unit interval [0, 1] and the circle T have in common that they are compact metric spaces.
Unlike [0, 1], T is also a group.

All our topologies will come from metrics. For completeness we recall what the metric
topology is on a metric space (X, d) (see MA2223).

1.2.3 Definition. Given any set X of points and a function d : X ×X → [0,∞) ⊂ R with these
3 properties:

(M1) d(z, w) ≥ 0 with equality if and only if z = w;

(M2) d(z, w) = d(w, z);

(M3) d(z, w) ≤ d(z, v) + d(v, w) (triangle inequality),

we say that d is a metric on the space X and we call the combination (X, d) a metric space.

1.2.4 Notation. In any metric space (X, d) we define open balls as follows. Fix any point x0 ∈ X
(which we think of as the centre) and any r > 0. Then the open ball of radius r centre x0 is

B(x0, r) = {x ∈ X : d(x, x0) < r}.

The closed ball with the same centre and radius is

B̄(x0, r) = {x ∈ X : d(x, x0) ≤ r}.
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1.2.5 Definition (Open sets in a metric space). For a metric space (X, d) and a subset G ⊆ X
and a point x ∈ G, we say that x is an interior point of G if there is a ball B(x, r) of some
positive radius r > 0 centred at x so that B(x, r) ⊂ G. We write G◦ for the set of interior points
of G.

A set G ⊆ X is called open if each x ∈ G is an interior point of G (that is, if G◦ = G).
The metric topology on (X, d) is the collection Td of all subsets G ⊆ X that are open.
A set S ⊆ X is called closed if its complement X \ S is open.

1.2.6 Definition. For a metric spaces (X, d) a subsetK ⊆ X is called compact if every sequence
(kn)∞n=1 in K has some convergent subsequence with a limit in K, that is a subsequence (knj

)j
such that ∃ limj→∞ knj

∈ K.
X is compact if K = X is a compact subset.

There is a more general definition for topological spaces (involving open covers) but we will
manage without using that.

1.2.7 Lemma. (i) T is an abelian group with the operation of multiplication of complex num-
bers (and identity element 1 ∈ T).

(ii) T is a compact metric space.

(iii) C(T) is a vector space over C with addition and multiplication by complex scalars defined
pointwise.

(iv) There is a vector space isomorphism

T : C(T)→ CP [0, 1]

given by
TF (x) = F (e2πix)

Proof. (i) It is well known (and follows from the axioms for a field) that C∗ = {z ∈ C : z 6= 0}
(the nonzero elements in C) is an abelian group under multiplication (with identity element
1) and since |ζη| = |ζ||η| and |1/ζ| = 1/|ζ| and 1 ∈ T, it is easy to see that T is a subgroup
of C∗.

(ii) T is compact because of the Heine-Borel theorem (as it is closed and bounded in C = R2).

(iii) To show that C(T) is a vector space, we could check that it is a vector subspace of the
vector space of all functions f : T → C. That means showing that (the constant function)
0 ∈ C(T) and that f + λg is continuous on T if f, g ∈ C(T) and λ ∈ C.

(iv) Since φ1(x) = e2πix is a continuous function from [0, 1] to T, and our definition of TF (or
T (F ) if you prefer that) is

TF = F ◦ φ1,

TF will be continuous on [0, 1] for each F ∈ C(T). Also φ1(0) = 1 = φ1(1) and so
TF (0) = TF (1), which is the additional property we need for TF ∈ CP [0, 1].
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It is easy to see that T : C(T)→ CP [0, 1] is a linear transformation.

To show it is an isomorphism of vector spaces, what we need is to show T is surjective.
If f ∈ CP [0, 1] we want to define F ∈ C(T) so that TF = f and that forces us to take
F (e2πix) = f(x). Each ζ ∈ T can be written as ζ = e2πix for x ∈ [0, 1] and in fact x is
uniquely determined by ζ except that for ζ = 1 we have two choices x = 0 and x = 1. Since
we have f(0) = f(1) we have F (1) defined unambiguously. To show that F is continuous,
we can rely on complex logarithms log ζ and x = 1/(2πi) log ζ , provided we exclude ζ = 1
and choose the branch of log so that log ζ ∈ i(0, 2π). This shows F (ζ) = f(1/(2πi) log ζ)
is continuous on T \ {1}. To deal with continuity at ζ = 1 we could exclude ζ = −1 and
choose another branch of log ζ ∈ i(−π, π). We also need to extend f ∈ CP [01] to be
(continuous and) periodic on R and then again F (ζ) = f(1/(2πi) log ζ) is continuous on
T \ {−1}. So F ∈ C(T) and TF = f .

1.2.8 Remark. Under the isomorphism T above, the functions on T that correspond to φn(x) =
e2πinx ∈ CP [0, 1] are χn(ζ) = ζn. (That is Tχn = φn because φn(x) = (e2πix)n.)

Each such χn is a group homomorphism χn : T → T and is furthermore continuous. We
will move now to more general groups G than G = T and a key role in Fourier analysis of
functions F : G → C will be played by characters. Characters will be defined as continuous
group homomorphisms χ : G→ T.

1.3 Topological abelian groups
1.3.1 Definition. By a metrizable space X we mean a set X with a collection T of subsets of
X such that there exists some metric d on X with T = Td.

Two metrics d and d′ on X are called equivalent if they both give the same open sets, that is
if Td = Td′ .

1.3.2 Remark. Since continuity of functions f : X → Y between metric spaces (X, d) and (Y, ρ)
can be expressed solely using open sets, we take the view that the metric is not so important
to us. But we stop short of allowing arbitrary topological spaces because some things are sim-
pler for metric spaces (such as the definition of compactness — recall remarks in the proof of
Lemma 1.2.7). Also limits of sequences can be used to describe continuity and closures (but do
not suffice in general topological spaces).

However, we may want to switch from one metric to another at times. For instance if we have
one metric d on X , then

d′(x, y) =
d(x, y)

1 + d(x, y)

defines an equivalent metric d′, different from d. If, for example, X = R and d(x, y) = |x− y|,
then d′ has the (strange but sometimes useful) property that d′(x, y) < 1 always.

1.3.3 Definition. A metric space (X, d) is called locally compact if for each point x0 ∈ X there
is some r > 0 (depending on x0) such that the closed ball B̄(x0, r) is compact.

We will only use the term locally compact for metrizable spaces.
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1.3.4 Example. R with the usual absolute value metric d(x, y) = |x − y| is locally compact
because if we take r = 1, then B̄(x0, r) = [x0 − 1, x0 + 1] is compact.

T is locally compact because it is a compact metric space and so it follows that every closed
ball B̄(ζ0, r) with r > 0 is compact (or if we take r = 2, we have B̄(ζ0, r) = T compact (any
ζ0 ∈ T)).

1.3.5 Definition. By a topological group we will mean a group G which is also a metrizable
space where multiplication and inversion are continuous.

In more detail, we suppose d is a metric on G that gives rise to the topology, and then we
defined a metric on G × G by ρ((g1, g2), (h1, h2)) = d(g1, h1) + d(g2, h2). Then G × G is a
metrizable space. We insist then that the maps

(TG1) multiplication : G×G→ G ((g, h) 7→ gh)

(TG2) inversion : G→ G (g 7→ g−1)

are each continuous.

1.3.6 Examples.

(a) T is a topological group

Proof. To prove that multiplication is continuous from T× T→ T fix (ζ0, η0) ∈ T× T and
ε > 0.

To show continuity at (ζ0, η0) we show that it is possible to find δ > 0 such that

(ζ, η) ∈ T× T, ρ((ζ, η), (ζ0, η0)) = |ζ − ζ0|+ |η − η0| < δ ⇒ |ζη − ζ0η0| < ε

Looking at

|ζη − ζ0η0| = |ζ(η − η0) + (ζ − ζ0)η0|
≤ |ζ||η − η0|+ |ζ − ζ0||η0|
= |η − η0|+ |ζ − ζ0|

we can see that δ = ε will work.

Being continuous at each point (ζ0, η0) ∈ T× T, we have that multiplication is continuous.
(Another proofs could use sequences tending to (ζ0, η0).)

The argument for inversion is also quite elementary.

(b) (R,+), by which we mean R with addition as the group operation, is a topological group
(using the usual metric topology on R)

Proof. So now we have to prove that addition : R× R→ R ((x, y) 7→ x+ y) and negation
: R→ R (x 7→ −x) are continuous.

We know that these are continuous, but they are not at all hard to check.
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(c) (Z,+) is a topological group. (On Z we take the usual absolute value distance but then
B(n, 1) = {n} for each n ∈ Z and so every subset of Z is open. It is called a discrete space.)

Proof. Every subset of Z× Z is also open (or Z× Z is discrete) and so every function from
Z× Z to any other metric space must be continuous. In particular addition is continuous.

Similarly, negation n 7→ −n is continuous on Z.

(d) If G is a finite abelian group (for example the cyclic group of order n for some n > 1) then
G is a topological group with the discrete topology (or with the metric where d(g, h) = 1
when g 6= h and d(g, g) = 0).

The above examples will be our main concrete examples of topological groups. They are all
abelian groups and are locally compact metrizable spaces.

1.3.7 Definition (Characters). If G is a an abelian topological group, then a character of G is a
continuous group homomorphism χ : G→ T.

1.3.8 Remark. If the group operation on G is written as multiplication, then we need χ to be a
continuous map and to satisfy the homomorphism rule

χ(gh) = χ(g)χ(h) (g, h ∈ G)

If e ∈ G is the identity element, we must have χ(e) = 1 (because χ(e) = χ(ee) = χ(e)2 ∈ T).
So, in any groupGwe can take the trivial character χ0(g) = 1 (constant map) as one example.
If G = T, examples are χn(ζ) = ζn for n ∈ Z. (It is not a coincidence that this ties in with

φn(x) = e2πinx = (e2πix)n used in our Fourier series.)
If G is R with addition as the group operation, we want χ : R→ T to satisfy

χ(x+ y) = χ(x)χ(y) (x, y ∈ R)

(and that forces χ(0) = 1). Examples are χt(x) = e2πixt (for t ∈ R).
[Maybe I should warn you that there is a different use of the word ‘character’ for traces of

representations of groups (often finite groups), something you might encounter in a different
module on algebra.]

1.3.9 Definition (Dual group). If G is an abelian topological group, we define Ĝ to be the set of
all characters χ : G→ T and introduce a multiplication rule for characters χ1, χ1 by

(χ1χ2)(g) = χ1(g)χ2(g)

1.3.10 Proposition. If G is an abelian topological group, then Ĝ is again an abelian group with
the above multiplication rule and identity element the trivial character χ0 (given by χ0(g) ≡ 1).
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Proof. If χ1, χ2 ∈ Ĝ, then the product function χ1χ2 is certainly continuous (as a product of two
C-valued continuous functions). It is also a character because |(χ1χ2)(g)| = |χ1(g)||χ2(g)| = 1
(∀g ∈ G) and

(χ1χ2)(gh) = χ1(gh)χ2(gh)

= χ1(g)χ1(h)χ2(g)χ2(h)

= χ1(g)χ2(g)χ1(h)χ2(h)

= (χ1χ2)(g)(χ1χ2)(h)

(for g, h ∈ G).
The trivial character χ0(g) ≡ 1 is an identity for this multiplication on Ĝ because for χ ∈ Ĝ

(χ0χ)(g) = χ0(g)χ(g) = 1χ(g) = χ(g)

and so χ0χ = χ. Similarly χχ0 = χ but in fact the multiplication of functions is commutative:
χ1χ2 = χ2χ1 holds for χ1, χ2 ∈ Ĝ.

Finally there is an inverse 1/χ for each χ ∈ Ĝ. For this we have to check that 1/χ is a group
homomorphism from G to T (so 1/χ ∈ Ĝ) and χ(1/χ) = χ0 = (1/χ)χ is easy to check.

So Ĝ is an abelian group.

Next we compute Ĝ for some examples.

1.3.11 Proposition. (a) The characters of the additive group (R,+) are all of the form χt(x) =
e2πixt for a unique t ∈ R and R̂ is isomorphic to R via χt 7→ t.

(b) The characters of the group T are all of the form χn(ζ) = ζn for a unique n ∈ Z and T̂ is is
isomorphic to Z via χn 7→ n.

(c) The characters of the additive group (Z,+) are all of the form χζ(n) = ζn for a unique
ζ ∈ T and Ẑ is isomorphic to T via χζ 7→ ζ .

Proof. (a) We can check easily that χt ∈ R̂ for each t ∈ R.

Let χ : R→ T be a character. By continuity there is δ > 0 so that |x| < δ ⇒ |χ(x)−χ(0)| =
|χ(x)− 1| < 1. So for |x| < δ, Reχ(x) > 0 and there is a unique θ(x) ∈ (−π/2, π/2) with
eiθ(x) = χ(x). If |x| < δ, then

χ(x) = χ
(x

2
+
x

2

)
= χ(x/2)χ(x/2) = χ(x/2)2

Thus χ(x) = eiθ(x) = (eiθ(x)/2)2 = (χ(x/2))2 and so χ(x/2) = ±eiθ(x)/2. Since−eiθ(x)/2 has
negative real part, χ(x/2) = eiθ(x)/2 and θ(x/2) = θ(x)/2. By induction θ(x/2n) = θ(x)/2n

for n ∈ N.

Fix x0 = δ/2 and put t = θ(x0)/(2πx0). We have

χ(x0/2
n) = eiθ(x0)/2

n

= e2πix0t/2
n

= e2πi(x0/2
n)t
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By induction on k ∈ N, we get

χ

(
kx0
2n

)
= χ

(x0
2n

+ · · ·+ x0
2n

)
= (χ(x0/2

n))k = e2πi(kx0/2
n)t

and since χ(x)χ(−x) = χ(0) = 1, this also holds for negative k ∈ Z (and for k = 0). Since
numbers x = kx0/2

n are dense in R and both sides are continuous, we conclude

χ(x) = e2πixt

for all x ∈ R. Thus χ = χt.

If t 6= t′, then χt 6= χt′ because χt(x) 6= χt′(x) for small x > 0.

So the map t 7→ ζt is a bijection from R to R̂. Since χt(x)χt′(x) = e2πixte2πixt
′

=
e2πix(t+t

′) = ζt+t′(x), the map is a group homomorphism from (R,+) to R̂. Being a bi-
jection, the map is an isomorphism.

(b) We can check easily that ζ 7→ ζn is a character of T for each n ∈ Z.

If χ : T → T is a character, then, then µ(x) = χ(e2πix) is a character µ ∈ R̂ (because it a
composition of the continuous homomorphism x 7→ e2πix from R to T and the continuous
homomorphism ζ : T→ T). Also µ(1) = χ(e2πi) = χ(1) = 1.

By the (a), there is t ∈ R with µ = χt in the notation from (a), that is µ(x) = e2πixt. Since
µ(1) = 1, we have t ∈ Z and we write n instead of t. Now

χ(e2πix) = µ(x) = e2πixn = (e2πix)n

for all x ∈ R, or χ(ζ) = ζn for all ζ ∈ T. Hence χ = χn in the notation from (b).

If n 6= n′, then if x ∈ R is close enough to 0 and ζ = e2πix, ζn/ζn′
= e2πinx/e2πin

′x =
e2πi(n−n

′)x 6= 1. Hence χn 6= χn′ .

Thus the map n 7→ χn is a bijection from Z to T̂.

Since ζn+n′
= ζnζn

′ for ζ ∈ T and n, n′ ∈ Z we have χn+n′ = χnχn′ and this is what is
needed to show that the map n 7→ χn is a group homomorphism. Being a bijection, it is an
isomorphism.

(c) If χ : Z → T is a character, put ζ = χ(1). Then χ(2) = χ(1 + 1) = χ(1)χ(1) = ζ2 and by
induction χ(n) = ζn for n ∈ N. Since χ(−n) = (χ(n))−1 = ζ−n and χ(0) = 1, we have
χ(n) = ζn for each n ∈ Z. So χ = χζ .

Note that χζ ∈ Ẑ for each ζ ∈ T and χζ = χζ′ ⇒ ζ = χζ(1) = χζ′(1) = ζ ′. So ζ 7→ χζ is a
bijection from T to Ẑ.

Finally the bijection has χζχζ′ = χζζ′ for ζ, ζ ′ ∈ T (because χζ(n)χζ′(n) = ζn(ζ ′)n =
(ζζ ′)n = χζζ′(n) for n ∈ Z) and so it is a group homomorphism. As a bijection, it is an
isomorphism.
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1.3.12 Remark. It is actually the case that these examples reveal some facts that hold quite often.
We will discuss some more technicalities before we get to the results, but for each of the 3 abelian

groups G we have Ĝ is another locally compact abelian group and the dual of Ĝ, that is ˆ̂
G, turns

out to be G again.
Our approach to Fourier theory is that the right general setting for Fourier’s ideas on re-

constructing functions from sines and cosines is first to take complex exponentials (as we have
done already) and then to consider them as members of an appropriate dual group Ĝ. So the
general idea is that all functions (satisfying some restrictions to be specified) from G to C can
be reconstructed by “adding up” linear combinations of characters (in some way to be specified
later).

Our first example will be G = T and functions F : T→ C.

1.3.13 Definition (Fourer series/transform on T). If F ∈ C(T) we define the Fourier coefficients
F̂ (n) for n ∈ Z by considering the associated f ∈ CP [0, 1] given by

f(x) = F (e2πix)

and taking

F̂ (n) = f̂(n) =

∫ 1

0

f(x)e−2πinx dx =

∫ 1

0

F (e2πix)(e2πix)n dx (1.3.1)

Recalling from Examples 1.3.11 (b) that T̂ = {χn : n ∈ Z} can be identified with Z, we
define the Fourier transform of F to be the function F̂ : T̂→ C (re-using the same name) given
by

F̂ (χn) = F̂ (n).

1.3.14 Remark. It would seem better to not have to go to the parametrization ζ = e2πix of T
in the formula (1.3.1) and instead to say that we are integrating F (ζ)ζn over T, or integrating
F (ζ)χn(ζ) over T to get F̂ (n). In fact the formula (1.3.1) is in a way more practical, but an
integral over T seems more elegant.

We will soon discuss a quick fix remedy for this in an approach to integration on T.
Before that, it might be instructive to compare Definition 1.3.13 with Definition 1.1.2.1. For

f ∈ CP [0, 1] we wrote down a Fourier series (1.1.3) although we have yet to discuss any sense
in which the series might be summed except when there are only finitely many nonzero terms
(leading to a trigonometric polynomial as the sum). We could write down a series for F ∈ C(T).
It would be ∑

χ∈T̂

F̂ (χ)χ =
∑
n∈Z

F̂ (χn)χn (1.3.2)

So the terms F̂ (χ)χ are multiples of functions (characters) χ ∈ C(T) by coefficients F̂ (χ). The
function F̂ (χ)χ evaluated at ζ ∈ T gives F̂ (χ)χ(ζ). Again we postpone how this series might
be summed and whether the sum is actually F .

The difference in Definition 1.3.13 is that we are heading for a group-theoretic approach, in
the language of locally compact abelian groups G and their duals Ĝ.
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So T is a group but the unit interval [0, 1] is not. However we use x ∈ [0, 1] to parametrize T
via ζ = e2πix and then the thing to note is that x = 0 and x = 1 both give ζ = 1. So we lose the
distinction between the endpoints of [0, 1], but in a way we already lost that when we restricted
to periodic f ∈ CP [0, 1], those with f(0) = f(1). We can make [0, 1) into a group either by
addition modulo 1 (so the sum x+ y of x, y ∈ [0, 1) is defined as x+ y if x+ y < 1 or x+ y− 1
if x+ y ≥ 1) or by multiplying

e2πixe2πiy = e2πi(x+y)

and expressing the result as e2πiz where z ∈ [0, 1).
Another way, essentially the same, is to consider the subgroup Z of the (additive) group R

and to consider the quotient group R/Z. Elements of the quotient group are cosets x + Z , and
x + Z = x′ + Z ⇐⇒ x − x′ ∈ Z. So every coset x + Z can be expressed uniquely with
x ∈ [0, 1) and then addition of cosets (x + Z) + (x′ + Z) = (x + x′) + Z comes down to
addition modulo 1. The quotient group R/Z is isomorphic to T (because the surjective group
homomorphism x 7→ e2πix from (R,+) to T has kernel Z). The periodic functions f(x) on R
with 1 as a period (those with f(x+1) ≡ f(x)) are exactly those that make sense on the quotient
R/Z via f(x+ Z) = f(x). When we showed T̂ = Z, we basically showed that (̂R/Z) is the set
of characters x + Z 7→ e2πinx with n ∈ Z (and that multiplication of characters corresponds to
addition of the n’s).

1.3.15 Definition (Riemann integration on T). If g : T → C is continuous we can define the
integral of g over T (with respect to normalized arc-length) to be∫

T
g(ζ) |dζ|/(2π) =

∫
ζ∈T

g(ζ) |dζ|/(2π)
def
=

∫ 1

0

g(e2πix) dx

1.3.16 Proposition (Alternative formula for Fourier coefficients). If F ∈ C(T), then

F̂ (χ) =

∫
T
F (ζ)χ(ζ) |dζ|/(2π) (χ ∈ T̂).

Proof. Combine the notation in Definition 1.3.15 with Definition 1.3.13.

1.3.17 Remark (Measurable functions on T). In order to generalize Definition 1.3.13 from contin-
uous F to more general functions as we did when we included f ∈ L1[0, 1] in Definition 1.1.2.1,
we should start with a measure on T and then define measurable functions on T and finally
integrable functions.

A short-cut is to say that g : T→ C is measurable if f : [0, 1]→ C given by f(x) = g(e2πix)
is Lebesgue measurable, that g is integrable if and only if f is and then that the integral of g is
just the Lebesgue integral

∫
[0,1]

f dµ.
The usual and more satisfactory (but in the end equivalent) approach is to set up a σ-algebra

of subsets of T and a measure λ on the σ algebra that gives normalized arclength of subsets, then
use the same sort of approach as used in MA2224 to define integrals over the real line. That
would end up with

∫
T g dλ. It would be somehow better because it maps out how to do things

when T is replaced by a general (compact) group. But in the end we would have the same value
for the integral as with our short-cut. We will use the notation

∫
T g dλ even though we have not

really explained λ.
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1.3.18 Definition. For K = R and K = C we define

L1(T) = {g : T→ K : g measurable and
∫
T
|g| dλ <∞}.

This space is called the space of Lebesgue integrable functions (on T) and λ refers to normalized
arclength measure.

We also define the magnitude of g ∈ L1(T) as

‖g‖1 =

∫
T
|g| dλ

1.3.19 Remark. We could define λ(E) for E ⊆ T by saying

λ(E) = µ({x ∈ [0, 1] : e2πix ∈ E})

and that this is defined only for those E where the subset of [0, 1] is a Lebesgue measurable
subset. Again a kind of short-cut.

1.3.20 Definition (more general definition that Definition 1.3.13). If F ∈ L1(T) we define the
Fourier transform of F to be the function F̂ : T̂→ C given by

F̂ (χ) =

∫
T
Fχ̄ dλ

(defined with the Lebesgue integral).
(The integrand is the function with value at ζ ∈ T given by F (ζ)χ(ζ).)

1.3.21 Remark. We could now state and prove a version of Lemma 1.1.5.3 in our new context,
but in fact it would not really be a different result, just using different notation.

1.4 Finite abelian groups

In this section we discuss what the Fourier theory says for functions f : G→ C on a finite abelian
group G.

We will write G additively, so (G,+). As mentioned before (in Examples 1.3.6 (d)), finite
groups can get the discrete topology and then the continuous functions f : G → C are just all
functions. If we list the elements G = {g0 = 0, g1, . . . , gN−1} then a function f : G → C is the
same as an N -tuple (f(g0), f(g1), . . . , f(gN)} of values, or a point in CN (with N the number
of elements in G, usually referred to as the order of G).

The dual group Ĝ is the set of characters χ : G → T, functions that satisfy χ(g + h) =
χ(g)χ(h) for g, h ∈ G. We should say that these χ have to be continuous also, but all functions
on G are continuous in this context, and so continuity is not a concern.

1.4.1 Examples (Simple examples of finite abelian groups).
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(i) (Cyclic groups)

Written with multiplicative notation, the cyclic group of order N has one generator g with
gN = 1, and all the distinct elements of G are 1 = g0, g, g2, . . . , gN−1. Multiplication gngm

gives the exponent n+m reduced modulo N .

If we write the operation additively, powers become multiples, that is gn becomes ng.

We can take the cyclic group of order N to be Z/(NZ), and each coset of the subgroup
NZ has a unique representative among 0, 1, . . . , N − 1. We write ZN for Z/(NZ) or
{0, 1, . . . , N − 1} with addition modulo N .

The characters are then the homomorphisms χ : ZN → T. These are determined com-
pletely by the value ζ = χ(1), because χ(0) = 1, χ(2) = χ(1 + 1) = χ(1)χ(1) = ζ2 and
in general χ(n) = ζn for 0 ≤ n < N . But we have to have ζN = 1, or ζ an N th root of
1. The N th roots of 1 (in T) are of the form e2πik/N for k = 0, 1, . . . , N − 1 and form a
(multiplicative) cyclic group with generator e2πi/N .

So in a way the dual group of ZN is ZN again.

(ii) (direct sums of cyclic groups)

If G1 and G2 are abelian groups (we write them additively now) then their direct sum
G1⊕G2 is the Cartesian productG1×G2 with coordinatewise addition. That is the operation
is given by

(g1, g2) + (h1, h2) = (g1 + h1, g2 + h2).

The identity element is (0, 0).

If χ : G1 ⊕ G2 → T is a character, then χ1(g1) = χ(g1, 0) gives a character of G1 and
χ2(g2) = χ(0, g2) gives a character ofG2. In fact we can recover χ from χ1 and χ2 because

χ(g1, g2) = χ((g1, 0) + (0, g2)) = χ(g1, 0)χ(0, g2) = χ1(g1)χ2(g2)

From this we can also see that if χ1 ∈ Ĝ1 and χ2 ∈ Ĝ2, then the above formula gives
χ ∈ Ĝ1 ⊕G2 and also that χ is uniquely determined by (χ1, χ2). It follows that we can
identify

Ĝ1 ⊕G2
∼= Ĝ1 × Ĝ2

and we can also see that the group structure on Ĝ1 ⊕G2 corresponds to the direct product
group operation on Ĝ1 × Ĝ2, the one where

(χ1, χ2) · (χ′1, χ′2) = (χ1χ
′
1, χ2χ

′
2)

This is actually the same as the direct sum of Ĝ1 and Ĝ2 but the direct sum notation is best
used for groups written additively.

In fact the above two examples allow us to deal with all finite abelian groups, because of the
following result which we quote without proof.
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1.4.2 Theorem (Structure theorem for finite abelian groups). If (G,+) is a finite abelian group,
then there are cyclic subgroups G1, G2, . . . , Gk such that

G = G1 ⊕G2 ⊕ · · · ⊕Gk

It is in fact possible to take the groups Gj to be each of prime power order and then the orders of
the Gj are uniquely determined by G apart from the the possibility of permuting the summands.

1.4.3 Remark. There is a more general theorem for finitely generated abelian groups G, those
such that there is a finite subset F of G such that no proper subgroup of G contains F . In that
case the result allows for finitely many infinite cyclic summands, or finitely many copies of Z, in
addition to the finite cyclic summands as above. The direct sum of ` copies of Z is Z`.

The (nonzero) finitely generated abelian groups with no elements of finite order (apart from
the identity) are those isomorphic to Z` for some ` ∈ N.

[Recall the the order of an element of a group is the order of the subgroup generated by that
element.]

1.4.4 Corollary. If G is a finite abelian group, then Ĝ is a finite abelian group of the same order.

Proof. We can use Theorem 1.4.2 together with Examples 1.4.1 to prove this by induction on the
number of cyclic summands required to give G.

1.4.5 Remark. For a finite abelian group G, we could use the notation C(G) for the continuous
functions f : G → C, but all functions are continuous in this context and so the C(G) notation
seems out of place, though it is analogous to C(T). As noted at the start of this discussion, if
G has order N and f : G → C, we can consider f as an N -tuple of complex numbers, with
coordinates corresponding to the values of f .

Either way, these functions f : G→ C form a vector space over C of dimension N .

1.4.6 Lemma. If G is a cyclic group of order N , then the characters χ ∈ Ĝ are linearly inde-
pendent functions on G.

Proof. We can prove this using Vandermonde determinants in a way very similar to what we did
in the proof of Example 1.1.4.9. However, we will also redo this shortly via inner products.

Say G = ZN and then the dual group Ĝ is generated by the basic character χ1 given by
χ1(n) = e2πin/N . That is Ĝ = {1, χ1, χ

2
1, . . . , χ

N−1
1 } (see Examples 1.4.1). To show they are

linearly independent as functions write each χj1 as an N -tuple

(χj1(0), χj1(1), . . . , χj1(N − 1)) = (1, (e2πi/N)j, . . . , (e2πi(N−1)/N)j)

(j = 0, 1, . . . , N−1). Assembling theseN vectors into a matrix, we get anN×N matrix and its
determinant is a Vandermonde determinant, nonzero because theN numbers (χ1(0), χ1(1), . . . , χ1(N−
1)) are distinct.
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1.4.7 Remark. This means that every function f : ZN → C can be expressed as a linear combi-
nation of the characters χ ∈ ẐN . This means a Fourier decomposition valid for all functions, and
so it is somewhat more complete information than we had for Fourier series of f ∈ CP [0, 1] or
f ∈ C(T) (where we have no result beyond the case of trigonometric polynomials). However, in
the context of ZN we do not yet have a concrete formula for the coefficients of f in an expansion
with characters.

We can get such a formula by using inner products. In the case ofC(T) we got the appropriate
inner product by integration but in the case of a finite group this is replaced by summation.

1.4.8 Definition. IfG is a finite abelian group, we define an inner product of functions f, h : G→
C as

〈f, h〉 =
∑
g∈G

f(g)h(g)

1.4.9 Lemma. Definition 1.4.8 gives an inner product on the space of C-valued functions on a
finite abelian group G.

Proof. If we list the elements of G in some order G = {g0, g1, . . . , gN−1}, then the inner product
we have defined corresponds to the usual inner product on Cn (applied to the N -tuples of values
of the functions)

〈f, h〉 =
N−1∑
j=0

f(gj)h(gj) = 〈(f(g0), . . . , f(gN−1)), (h(g0), . . . , h(gN−1))〉

Hence we know it satisfies the conditions of Definition 1.1.4.3.

1.4.10 Proposition. If G is a finite abelian group of order N , then the characters of G form an
orthogonal set of functions on G (in the inner product of Definition 1.4.8) and 〈χ, χ〉 = N for
each χ ∈ Ĝ.

Proof. We prove this first for the case of a cyclic group G, which we may take to be G = ZN . If
χ, χ′ ∈ Ĝ, then we have χ and χ′ given by two N th roots of unity χ(1) and χ′(1). Thus

〈χ, χ′〉 =
N−1∑
j=0

χ(j)χ′(j) =
N−1∑
j=0

χ(1)jχ′(1)j =
N−1∑
j=0

(χ(1)/χ′(1))j

Now χ(1)/χ′(1) is also an N th root of unity. If it is 1, then χ = χ′ and we get 〈χ, χ′〉 = 〈χ, χ〉 =
N . If χ 6= χ′ we get

〈χ, χ′〉 =
1− (χ(1)/χ′(1))N

1− χ(1)/χ′(1)
= 0

from the formula for the sum of a geometric series (or maybe you are familiar with this standard
fact about sums of roots of unity). This completes the proof in the cyclic case.

For a general finite abelian group, we rely on the structure theorem (1.4.2) and induction on
the number of cyclic summands. If G is not cyclic the theorem says we can write G = G1 ⊕G2
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where (say) G1 is cyclic and G2 has (one) fewer cyclic summands than G. By the first part of the
proof we have the result for G1 and by the inductive hypothesis we have it for G2. Let N1 be the
order of G1, N2 the order of G2 and χ, χ′ ∈ Ĝ. So then χ has the form

χ(g1 + g2) = χ1(g1)χ2(g2) (g1 ∈ G1, g2 ∈ G2)

for χ1 ∈ Ĝ1, χ2 ∈ Ĝ2. Similarly χ′(g1 + g2) = χ′1(g1)χ
′
2(g2). Then we have

〈χ, χ′〉 =
∑

g1∈G1,g2∈G2

χ(g1 + g2)χ′(g1 + g2)

=
∑

g1∈G1,g2∈G2

χ1(g1)χ2(g2)χ′1(g1)χ
′
2(g2)

=

(∑
g1∈G1

χ1(g1)χ′2(g1)

)(∑
g2∈G2

χ2(g2)χ′1(g2)

)

If χ1 6= χ′1 then the first of the latter two sums vanishes, while if χ2 6= χ′2 we also get 0 by the
inductive hypothesis. If, on the other hand, χ = χ′, then we get N1N2 = N .

That completes the inductive step.

1.4.11 Corollary (Fourier expansion for finite abelian groups). If G is a finite abelian group of
order N , then

{χ/
√
N : χ ∈ Ĝ}

is an orthonormal basis for C(G) = {f : G→ C} (in the inner product of Definition 1.4.8).
It follows that each f ∈ C(G) has a representation

f =
∑
χ∈Ĝ

〈f, χ/
√
N〉 χ√

N

1.4.12 Definition. If G is a finite abelian group of order N and f : G → C, then the Fourier
transform of f is the function f̂ : Ĝ→ C given by

f̂(χ) = 〈f, χ/
√
N〉 =

1√
N

∑
g∈G

f(g)χ(g)

1.4.13 Corollary (Inverse Fourier transform formula). If G is a finite abelian group of order and
f : G→ C, then

f =
1√
N

∑
χ∈Ĝ

f̂(χ)χ

or

f(g) =
1√
N

∑
χ∈Ĝ

f̂(χ)χ(g) (g ∈ G).
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1.4.14 Remark. Note then that the inverse Fourier transform formula is similar to the Fourier
transform, exchanging G and Ĝ and also omitting the complex conjugation.

Comparing the Fourier transform for finite abelian G with Definition 1.3.20 for f ∈ L1(T)
we note that on T we integrated with respect to a normalized measure on T. In fact it is a rotation-
invariant measure, or a measure λ on T invariant under translation by elements of T and with
total mass λ(T) = 1. (The invariance property is λ(ζE) = λ(E) for E ⊆ T measurable, where
ζE = {ζz : z ∈ E} is the rotation of E by ζ .)

The natural way to get a measure on a finite set like G is to assign a mass mg ≥ 0 to each
g ∈ G and then to define the measure or total mass of a subset E ⊂ G by m(E) =

∑
g∈Emg.

Matters of measurability are not normally relevant on finite sets and for any function f : G→ C
we have an integral ∫

G

f dm =
∑
g∈G

f(g)mg

which is actually a finite sum. If we developed an abstract approach to measures and integrals
(including the Lebesgue integral as a special case), it would reduce for finite sets to the above
kind of sum.

In the case of T we normalized so that λ(T) = 1. For a finite group G, the translation-
invariance requirement would imply that mg is constant, independent of g ∈ G. Then there
are two rather obvious choices, one to have mg = 1 for each g ∈ G (and then m would be
called counting measure, m(E) = the number of elements of E) and the other would be to insist
m(G) = 1. The latter would force mg = 1/N with N the order of G.

The formulae we have do not use either of these. You could argue that we take the half-way
housemg = 1/

√
N instead, so that f̂(χ) =

∫
G
fχ̄ dm. The inverse formula (in Corollary 1.4.13),

where we sum over χ ∈ Ĝ, could also be written as an integral over Ĝ, but again with a measure
that assigns mass 1/

√
N to each χ ∈ Ĝ.

1.5 The real line
We consider now the case G = R. Again the idea is to write f : R → C in terms of characters
χ ∈ R̂, which are identified with points of R again by Proposition 1.3.11 (a). Recall χt(x) =
e2πixt determines all characters as t varies over t ∈ R.

There are issues here in identifying a class of f where we can take a transform and there is no
obvious way in which the characters are orthogonal. However, the L1 approach works out fine.

1.5.1 Definition. For K = R and K = C we define

L1(R) = {f : R→ K : f measurable and
∫
R
|f | dµ <∞}.

This space is called the space of Lebesgue integrable functions (on R) and µ refers to Lebesgue
length measure on the real line.

On this space we define addition f+g of functions f, g ∈ L1(R) and scalar multiples λf (λ ∈
K and f ∈ L1(R)) in the same way as for previous L1 definitions, by (f + g)(x) = f(x) + g(x)
and (λf)(x) = λf(x).
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We also define the magnitude of f ∈ L1(R) as

‖f‖1 =

∫
R
|f | dµ

1.5.2 Definition. If f ∈ L1(R) we define the Fourier transform of f to be the function f̂ : R̂→ C
given by

f̂(χ) =

∫
R
fχ̄ dµ

(defined with the Lebesgue integral).
(The integrand is the function with value at x ∈ R given by f(x)χ(x).)
Identifying R̂ with R, this corresponds to

f̂(χt) =

∫
R
f(x)e2πixt dµ(x) =

∫
R
f(x)e−2πixt dµ(x)

and we may sometimes write f̂(t) in place of f̂(χt).

1.5.3 Examples. Examples of f ∈ L1(R) can be found by considering continuous f : R → R
that tend to 0 fast enough as x→ ±∞. In particular, if there is α > 1 such that

|f(x)| ≤ C

|x|α
(|x| ≥ 1),

that is enough.
An even stronger condition is to assume that f is a compactly supported continuous function,

where compactly supported means that

{x ∈ R : f(x) 6= 0}

has compact closure in R. Since the Heine Borel theorem says that the compact subsets of R
are those that are closed and bounded, we could also simply require that {x ∈ R : f(x) 6= 0} is
bounded, or contained in some finite interval [a, b] (−∞ < a ≤ b <∞). In that case f ∈ L1(R)
because ∫

R
|f | dµ =

∫
[a,b]

|f | dµ

is finite (as a Riemann integral).
The notation Cc(R) is used for the space of compactly supported continuous functions on R.

We are saying Cc(R) ⊂ L1(R).
As in the case of C(T) and CP [0, 1], or their L1 relatives, we have not yet stated any result

about recovering f from f̂ . So far we have such a result only for finite abelian G. And recall the
constraints identified in Lemma 1.1.5.3 (iv).

We can’t fall back on trigonometric polynomials here, because characters have constant ab-
solute value 1 and are therefore not in L1(R).
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A Structure theorem for finite abelian groups
Here we indicate a proof (more or less an old one due apparently to Kronecker) of the bare bones
of the theorem. We did not cover this in lectures and it won’t be examined. (There could be a
simpler way to express the argument.)

A.1 Theorem (Structure theorem for finite abelian groups, Theorem 1.4.2 simplified). If (G,+)
is a finite abelian group, then there are cyclic subgroups G1, G2, . . . , Gk such that

G = G1 ⊕G2 ⊕ · · · ⊕Gk

More precisely, there are elements g1, g2, . . . , gk ∈ G with gj of order Nj (for 1 ≤ j ≤ k), such
that Nj+1 divides Nj for 1 ≤ j < k, and each g ∈ G can be written uniquely as

g = m1g1 +m2g2 + · · ·+mkgk with 0 ≤ mj < Nj for 1 ≤ j ≤ k

(and we take Gj = Zgj for 1 ≤ j ≤ k).

Proof. As usual for additive groups we write 0 for the identity element of G and define ng for
n ∈ Z in the usual way (0g = 0, 1g = g, (n + 1)g = ng + g for n ≥ 0, (−n)g = −(ng) =
the additive inverse of ng). The order of g ∈ G is the smallest n ≥ 0 with ng = 0. In a general
group there might be no such n but for G finite, every g ∈ G has order at most |G| = the order of
G (the number of elements of G). The only m ∈ N with mg = 0 are then those where n divides
m. Also we know n divides |G| by Lagrange’s theorem.

If g ∈ G, the subgroup generated by g is {0, g, 2g, . . .} = {0, g, 2g, . . . , (ng − 1)g} where
ng is the order of g. We write Zg for this subgroup. As G is abelian, all subgroups are normal
subgroups and so the quotient group G/Zg makes sense.

If g1, g2 ∈ G, then G has an element of order the least common multiple of their orders.
[Write ni for the order of gi (i = 1, 2). Let h be the highest common factor of n1 and n2. Then
g3 = hg2 ∈ G has order n3 = n2/h and we can check that g1 + g3 has order n1n3 = n1n2/h =
lcm(n1, n2).

There is a largest possible order for an element of G. Say N1 is that largest order and g1
has order N1. It follows from the remark in the previous paragraph that every g ∈ G has order
dividing N1, or N1g = 0(∀g ∈ G). Now consider G′ = G/Zg1.

If G′ has order 1, then G = Zg1 is cyclic and we are finished proving what we want. Other-
wise we can set up an induction on the order of the group and assume we have already proved
the theorem for groups of any order smaller than |G|, in particular for G′.

So we can find g′2, . . . , g
′
k ∈ G/Zg1 so that each g′j has order Nj and every g′ ∈ G/Zg1 can

be expressed uniquely as
g′ = m2g

′
2 + · · ·+mkg

′
k.

Also each Nj+1 divides Nj for 2 ≤ j < k by the inductive hypothesis (and divides N1 too).
Recall that elements of G/Zg1 are cosets g + Zg1. Express g′j = g̃j + Zg1 for g̃j ∈ G and so our
conclusion is that for g ∈ G there are unique m2, . . . ,mk with 0 ≤ mj < Nj for 2 ≤ j ≤ k and

g + Zg1 = m2(g̃2 + Zg1) + · · ·+mk(g̃k + Zg1).
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Since Njg
′
j = 0, it means that Nj(g̃j + Zg1) = 0 + Zg1 or Nj g̃j ∈ Zg1.

Now
N1

Nj

Nj g̃j = N1gj = 0

and so Nj g̃j ∈ {0, Njg1, 2Njg1, . . . ,
(
N1

Nj
− 1
)
Njg1} = {x ∈ Zg1 : (N1/Nj)x = 0}. It follows

that there is gj ∈ g̃j +Zg1 with Njgj = 0. This gj has g′j = gj +Zg1, and then we have that each
g′ = g + Zg1 ∈ G/Zg1 can be expressed uniquely as

g′ = g + Zg1 = m2(g2 + Zg1) + · · ·+mk(gk + Zg1) = (m2g2 + · · ·+mkgk) + Zg1.

For each g ∈ G we can conclude that we can express

g = m1g1 +m2g2 + · · ·+mkgk

with 0 ≤ mj < Nj always. As the order of G is |G| = N1|G′| = N1N2 · · ·Nk, the numbers
m1,m2, . . . ,mk have to be uniquely determined by g (as otherwise we would not have enough
choices to represent each g ∈ G).

17 April 2018: Fix typo in §1.1.3.
Richard M. Timoney (April 17, 2018)
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