Name: Solutions

1. Let E be a normed space. Prove that dim E infinite implies dim E^* is infinite.

Solution: If dim $E^* < \infty$, then its dual $(E^*)^* = E^{**}$ would have the same finite dimension. Since there is a canonical (linear isometric) embedding $J \colon E \to E^{**}$, we'd have to have dim $E < \infty$ also.

2. Let E be a normed space and suppose that (x_n)[∞]_{n=1} is a sequence in E such that lim_{n→∞} α(x_n) = 0 for each α ∈ E*. Show that (x_n)[∞]_{n=1} converges to 0 ∈ E in the weak topology of E. [Hint: If U ⊂ E is open in the weak topology and 0 ∈ E, then there is a seminorm q: E → [0,∞) continuous for the weak topology such that B_q(0,1) ⊂ U. Also there is some m, some α₁, α₂,..., α_m ∈ E* and some constants C₁, C₂,..., C_m > 0 with q(x) ≤ C₁|α₁(x)| + ··· + C_m|α_m(x)| for x ∈ E.]

Solution: We aim to prove that if $U \subset E$ is open in the weak topology then there is N such that $n \geq N \Rightarrow x_n \in U$.

Fix such a U.

As in the hint, there is a seminorm $q: E \to [0, \infty)$ continuous for the weak topology such that $B_q(0,1) \subset U$. And we have $q(x) \leq C_1 |\alpha_1(x)| + \cdots + C_m |\alpha_m(x)|$ holding (for all $x \in E$ and some $\alpha_1, \alpha_2, \ldots, \alpha_m \in E^*$, some constants $C_1, C_2, \ldots, C_m > 0$).

By the assumption, $\lim_{n\to\infty} \alpha_j(x_n) = 0$ (for $1 \le j \le m$) and so there is N_j such that

$$n \ge N_j \Rightarrow |\alpha_j(x_n)| < \frac{1}{mC_j}$$

Now for $N = \max_{1 \le j \le m} N_j$, we have

$$n \ge N \Rightarrow q(x_n) \le \sum_{j=1}^m C_j |\alpha_j(x_n)| \le \sum_{j=1}^m C_j \frac{1}{mC_j} = 1 \Rightarrow x_n \in B_q(0,1) \subset U$$

3. Let $E = c_0$ and $\bar{B}_E = \{x \in E : ||x|| \le 1\}$ (where we use the usual norm $|| \cdot ||_{\infty}$ on c_0). Let $(x_n)_{n=1}^{\infty}$ be a sequence in \bar{B}_E and write each x_n as

$$x_n = (x_{n,j})_{j=1}^{\infty} = (x_{n,1}, x_{n,2}...)$$

for scalars $x_{n,j} \in \mathbb{K}$. Show that if $\lim_{n\to\infty} x_{n,j} = 0$ for each j, then the sequence $(x_n)_{n=1}^{\infty}$ converges to $0 \in c_0$ in the weak topology. [Hint: Recall c_0^* can be identified with ℓ^1 . Use the previous question.]

Solution: From the previous question it is enough to show that $\lim_{n\to\infty} \alpha(x_n) = 0$ for each $\alpha \in c_0^*$.

If $\alpha \in c_0^*$, we know (hint) that there is $y = (y_j)_{j=1}^\infty \in \ell^1$ so that

$$\alpha\left((x_j)_{j=1}^{\infty}\right) = \sum_{j=1}^{\infty} x_j y_j \qquad ((x_j)_{j=1}^{\infty} \in c_0)$$

Now if $\varepsilon > 0$ is fixed we can choose J so large that

$$\sum_{j=J+1}^{\infty} |y_j| < \frac{\varepsilon}{2}$$

(since $\sum_{j=1}^{\infty} |y_j| < \infty$). Then

$$\begin{aligned} |\alpha(x_n)| &= \left| \sum_{j=1}^{\infty} x_{n,j} y_j \right| \\ &\leq \sum_{j=1}^{\infty} |x_{n,j}| |y_j| \\ &= \sum_{j=1}^{J} |x_{n,j}| |y_j| + \sum_{j=J+1}^{\infty} |x_{n,j}| |y_j| \\ &\leq \sum_{j=1}^{J} |x_{n,j}| |y_j| + \sum_{j=J+1}^{\infty} |y_j| \\ &< \sum_{j=1}^{J} |x_{n,j}| |y_j| + \frac{\varepsilon}{2} \end{aligned}$$

(where we have used $x_n \in \overline{B}_E$ or $\sup_{j \ge 1} |x_{n,j}| \le 1$). Now, since we have assumed

$$\lim_{n \to \infty} x_{n,j} = 0$$

for each j, we can conclude that

$$\lim_{n \to \infty} \sum_{j=1}^{J} |x_{n,j}| |y_j| = 0$$

and so for n large enough

$$\sum_{j=1}^{J} |x_{n,j}| |y_j| < \frac{\varepsilon}{2} \Rightarrow |\alpha(x_n)| < \varepsilon$$

This shows $\lim_{n\to\infty} \alpha(x_n) = 0$, as required.

Richard M. Timoney