Name: Solutions

1. Let p be a seminorm on a vector space E over \mathbb{K} and let \mathcal{T}_p be the topology on E generated by p.

Show that $p: E \to \mathbb{R}$ is continuous (when E has the topology \mathcal{T}_p).

[Hint: If $V \subseteq \mathbb{R}$ is open and $x_0 \in p^{-1}(V)$ we can take $p_0 = p(x_0) \in V$ and r > 0 such that $(p_0 - r, p_0 + r) \subset V$. If $x \in E$ has $p(x - x_0) < r$ then show $p(x) \in (p_0 - r, p_0 + r) \subset V \Rightarrow x \in p^{-1}(V)$. (A handy form of the triangle inequality for norms is $||y - z|| \ge ||y|| - ||z|||$ and it also holds for seminorms.)]

Solution: Let $V \subseteq \mathbb{R}$ be open and we claim that $p^{-1}(V) \in \mathcal{T}_p$. For that, let $x_0 \in p^{-1}(V)$. Then $p(x_0) \in V$ and (since V is open in \mathbb{R}) there is r > 0 such that $(p(x_0) - r, p(x_0) + r) \subset V$. If $x \in B_p(x_0, r) = \{x \in E : p(x - x_0) < r\}$ then we have

$$r > p(x - x_0) \ge |p(x) - p(x_0)|$$

(by the triangle inequality) and so $p(x) \in (p(x_0) - r, p(x_0) + r) \subset V$, from which we have $x \in p^{-1}(V)$. This shows $B_p(x_0, r) \subset p^{-1}(V)$.

Hence $B_p(x_0, r) \subset p^{-1}(V)$. Thus $p^{-1}(V) \in \mathcal{T}_p$.

Aside. About the triangle inequality. It is usually stated as $p(y+z) \le p(y) + p(z)$ for $y, z \in E$, but the form $p(x - x_0) \ge |p(x) - p(x_0)|$ (for $x, x_0 \in E$) is equivalent.

The inequality $p(x - x_0) \ge |p(x) - p(x_0)|$ is the same as one of two inequalities

$$-(p(x) - p(x_0)) = p(x_0) - p(x) \le -p(x - x_0) \text{ or } p(x - x_0) \ge p(x) - p(x_0)$$

and that is the same as

$$p(x_0) \le p(x) + p(x - x_0)$$
 or $p(x) \le p(x_0) + p(x - x_0)$

If you take y = x and $z = x_0 - x$, the usual form of the triangle inequality gives

$$p(x_0) = p(y+z) \le p(y) + p(z) = p(x) + p(x_0 - x) = p(x) + p(x - x_0)$$

and the other inequality follows by taking $y = x_0$, $z = x - x_0$ (and y + z = x then).

To show they are equivalent, note that $p(x-x_0) \ge |p(x)-p(x_0)| \Rightarrow p(x-x_0) \ge p(x)-p(x_0) \iff p(x) \le p(x_0) + p(x-x_0)$. So, given $y, z \in E$ we can apply this with $x_0 = y, x = y + z$ to get $p(y+z) = p(x) \le p(x_0) + p(x-x_0) = p(y) + p(z)$.

2. Write out a proof that $(c_0)^* = \ell^1$ (by which we mean that the elements $\alpha \in (c_0)^*$ are exactly those of the form $\alpha(x) = \alpha((x_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} x_n y_n$ for $y = (y_n)_{n=1}^{\infty} \in \ell^1$, and that $\|\alpha\| = \|y\|_1$).

[Hint: There is a rather detailed proof that $(\ell^2)^* = \ell^2$ in Proposition 1.5.2] Solution: First if $y = (y_n)_{n=1}^{\infty} \in \ell^1$, it makes sense to define

$$\alpha_y \colon c_0 \to \mathbb{K}$$
 by the rule $\alpha_y(x) = \alpha_y((x_n)_{n=1}^\infty) = \sum_{n=1}^\infty x_n y_n$

That is because

$$\sum_{n=1}^{\infty} |x_n y_n| = \sum_{n=1}^{\infty} |x_n| |y_n| \le \sum_{n=1}^{\infty} ||x||_{\infty} |y_n| = ||x||_{\infty} \sum_{n=1}^{\infty} |y_n| = ||x||_{\infty} ||y||_1 < \infty$$

[we can instead say that this is true by Hölder's inequality with $p = \infty$ and q = 1] and so the series $\sum_{n=1}^{\infty} x_n y_n$ is guaranteed to be absolutely convergent (hence convergent in \mathbb{K}) for any choice of $x \in c_0, y \in \ell^1$.

It is rather wasy to see that $\alpha_y : c_0 \to \mathbb{K}$ is linear (for each $y \in \ell^1$). In detail if $x = (x_n)_{n=1}^{\infty} \in c_0, x' = (x'_n)_{n=1}^{\infty} \in c_0$ and $\lambda \in \mathbb{K}$,

$$\alpha_y(x+\lambda x') = \alpha_y((x_n+\lambda x'_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} (x_n+\lambda x'_n)y_n = \sum_{n=1}^{\infty} x_n y_n + \lambda \sum_{n=1}^{\infty} x'_n y_n$$
$$= \alpha_y(x) + \lambda \alpha_y(x')$$

The inequality we have above tells us that

$$|\alpha_y(x)| = \left|\sum_{n=1}^{\infty} x_n y_n\right| \le \sum_{n=1}^{\infty} |x_n y_n| \le ||x||_{\infty} ||y||_1 = ||y||_1 ||x||_{\infty}$$

and (since α_y is linear) it tells us that $\alpha_y \in (c_0)^*$ with $\|\alpha_y\| \leq \|y\|_1$.

In fact we can show the reverse inequality $\|\alpha_y\| \ge \|y\|_1$. Fix y and for $N \ge 1$ define $x^{(N)} = (x_n^{(N)})_{n=1}^{\infty} = (x_1^{(N)}, x_2^{(N)}, \dots, x_N^{(N)}, 0, 0, \dots) \in c_0$ by

$$x_n^{(N)} = \begin{cases} \bar{y}_n / |y_n| & \text{ if } y_n \neq 0 \text{ and } n \leq N \\ 0 & \text{ if } y_n = 0 \text{ or } n > N \end{cases}$$

Then $||x^{(N)}||_{\infty} = \sup_{n} |x_{n}^{(N)}| \le 1$ and

$$\alpha_y(x^{(N)}) = \sum_{n=1}^{\infty} x_n^{(N)} y_n = \sum_{n=1}^{N} x_n^{(N)} y_n = \sum_{n=1}^{N} |y_n|$$

But $|\alpha_y(x^{(N)})| \leq ||\alpha_y|| ||x^{(N)}||_{\infty} \leq ||\alpha_y||$ and so $\sum_{j=1}^N |y_n| \leq ||\alpha_y||$ for each N. Let $N \to \infty$ to get

$$||y||_1 = \sum_{n=1}^{\infty} |y_n| \le ||\alpha_y|| ||.$$

We now set about showing that $\alpha \in (c_0)^*$ implies there is $y \in \ell^1$ with $\alpha = \alpha_y$.

Consider the ("standard basis") vectors $e_1 = (1, 0, 0, ...) \in c_0$, $e_2 = (0, 1, 0, 0, ...) \in c_0$ and in general $e_n = (\delta_{j,n})_{j=1}^{\infty}$ (using Dirac δ notation). Define $y_n = \alpha(e_n)$. [These values must work if there is any y with $\alpha = \alpha_y$.]

We claim that $y = (y_n)_{n=1}^{\infty} \in \ell^1$. For that, define $x^{(N)}$ exactly as above (in terms of y and N) so that

$$x^{(N)} = \sum_{n=1}^{N} x_n^{(N)} e_n \in c_0$$

and $||x^{(N)}|| \leq 1$. Since α is linear,

$$\alpha(x^{(N)}) = \alpha\left(\sum_{n=1}^{N} x_n^{(N)} e_n\right) = \sum_{n=1}^{N} x_n^{(N)} \alpha(e_n) = \sum_{n=1}^{N} |y_n|.$$

But also $|\alpha(x^{(N)})| \le \|\alpha\| \|x^{(N)}\| \le \|\alpha\|$. Thus

$$\sum_{n=1}^{N} |y_n| \le \|\alpha\|$$

for each N. Hence $\sum_{n=1}^{\infty} |y_n| \le ||\alpha||$, and $y \in \ell^1$. By linearity $\alpha(x) = \alpha_y(x)$ for any finitely nonzero $x = (x_1, x_2, \dots, x_N, 0, 0, \dots) = \sum_{n=1}^{N} x_j e_j \in c_0$. These finitely nonzero x's are dense in c_0 , α and α_y are continuous, they agree on the dense set and so $\alpha = \alpha_y$.

Maybe an explanation of why the finitely nonzero x's are dense in c_0 . If $x = (x_n)_{n=1}^{\infty} \in c_0$, we know $\lim_{n\to\infty} x_n = 0$. So if $\varepsilon > 0$ is arbitrary, then there is N so that $n > N \Rightarrow |x_n| < \varepsilon$. Then

$$x - \sum_{n=1}^{N} x_n e_n = x - (x_1, \dots, x_N, 0, 0, \dots) = (0, 0, \dots, 0, x_{N+1}, x_{N+2}, \dots)$$

so that

$$\left\| x - \sum_{n=1}^{N} x_n e_n \right\| = \sup_{n > N} |x_n| = \max_{n > N} |x_n| < \varepsilon.$$

This shows that $x \in c_0$ and $\varepsilon > 0$ implies there is a finitely nonzero \tilde{x} with $||x - \tilde{x}||_{\infty} < \varepsilon$. That is the finitely nonzero sequences are dense in c_0 . It also shows that

$$x \in c_0 \Rightarrow x = \sum_{n=1}^{\infty} x_n e_n = \lim_{N \to \infty} \sum_{n=1}^{N} x_n e_n.$$

Moreover the only way to have $x = \sum_{n=1}^{\infty} a_n e_n$ for scalars a_n is to take $a_n = x_n$. This kind of property for the vectors e_n has a name. It means that $(e_n)_{n=1}^{\infty}$ is called a *Schauder basis* for the Banach space c_0 .

Richard M. Timoney