MA3422 (Functional Analysis 2) Tutorial sheet 7
[March 16, 2017]

Name: Solutions

1. Let p be a seminorm on a vector space £ over K and let 7, be the topology on E generated
by p.
Show that p: & — R is continuous (when E has the topology 7,,).
[Hint: If V C Ris open and 2y € p~ (V') we can take py = p(x¢) € V and r > 0 such that
(po—r,po+7) CV.If x € Ehas p(x—x0) < rthen show p(x) € (po—7r,po+7r) CV =

z € p~!(V). (A handy form of the triangle inequality for norms is ||y — z|| > ||ly|| — ||2]||
and it also holds for seminorms.)]

Solution: Let V C R be open and we claim that p~!(V') € 7,. For that, let 25 € p~*(V).
Then p(zo) € V and (since V is open in R) there is 7 > 0 such that (p(zq) —r, p(x¢)+7) C
V.Ifx € By(xg,7) = {x € E : p(x — x¢) < r} then we have

r > p(x —x0) > |p(z) — p(x0)]

(by the triangle inequality) and so p(x) € (p(zo) — 7, p(x¢) +7) C V, from which we have
x € p~*(V). This shows B,(zg,r) C p~*(V).

Hence B,(zo,7) C p~ (V). Thus p~ (V) € T,.
Aside. About the triangle inequality. It is usually stated as p(y + 2) < p(y) +
p(z) for y, z € E, but the form p(x — x¢) > |p(z) — p(zo)| (for z, 29 € E) is
equivalent.
The inequality p(xz —x¢) > |p(z) — p(z0)| is the same as one of two inequalities

—(p(x) — plzo)) = p(z0) — p(x) < —p(x — 20) OF p(T — T9) > P(2) — P(0)
and that is the same as

p(wo) < plx) + pl — x0) or p(x) < p(xo) + p(z — o)
If you take y = = and z = xy — x, the usual form of the triangle inequality gives

(o) = p(y + 2) < p(y) + p(2) = p(x) + p(xo — ) = p(x) + p(z — x0)

and the other inequality follows by taking y = zp, 2 = x —2g(and y + z = =
then).

To show they are equivalent, note that p(x—z¢) > |p(z)—p(zo)| = p(x—1z0) >
p(x) —p(ro) <= p(z) < p(ro)+p(r —x0). So, given y, z € E we can apply
this with xp = y, * = y + 2z to get p(y + 2) = p(x) < p(xo) + plx — z9) =
p(y) + p(2).



2. Write out a proof that (cy)* = ¢! (by which we mean that the elements o € (cy)* are
exactly those of the form a(x) = a((2,)52,) = D0, @pyn fory = (y,)22, € ¢*, and
that [laf| = [y]l1)-

[Hint: There is a rather detailed proof that (¢?)* = ¢* in Proposition 1.5.2]

Solution: Firstif y = (y,)22, € ¢, it makes sense to define
ay: ¢g = Kby the rule ay () = ay((z,)52) = anyn

That is because

) ) oS (o9
D eyl =D nllynl <D #llsolynl = 2llse Y lynl = l2llsollyll < 00
n=1 n=1 n=1 n=1

[we can instead say that this is true by Holder’s inequality with p = oo and ¢ = 1] and so
the series Y | ¥, is guaranteed to be absolutely convergent (hence convergent in K)
for any choice of x € ¢, y € (1.

It is rather wasy to see that a,: ¢g — K is linear (for each y € ¢'). In detail if z =
(n)e2 ) € co, ' = (x])22, € cpand X € K,

o0

a4+ ") = ay((z,+ A2))02 ) = Z(mn + ) Z TnlYn + A Z T Y

n=1

= 0y (2) + Ao (@)

The inequality we have above tells us that

9
E TnYn
n=1

and (since «, is linear) it tells us that av, € (cp)* with ||ay || < ||y]|1-

|y ()| = <D lewyal < llzllooliyll = lyllhlizlls

In fact we can show the reverse inequality ||cy,|| > |ly|j;. Fix y and for N > 1 define

e = (2" = @™ 27, 2 0,0,0,..) € ¢o by

) _ /Iyl iy # Oandn < N
! 0 ify,=00rn>N

Then ||z || = sup, [z")| < 1 and

N N
) va o =Y _ My =" |yl
n=1 n=1



But |ayy (z)] < [l |[la™[loc < [ley[| and so 323, [ya] < Jlay | for each N. Let
N — oo to get

lylls =D 1ynl < llaylll-
n=1

We now set about showing that « € (¢o)* implies there is y € ¢ with o = .

Consider the (“standard basis”) vectors e; = (1,0,0,...) € ¢, e2 = (0,1,0,0,...) € ¢
and in general e, = (9;,)?2, (using Dirac ¢ notation). Define y, = a(e,). [These values
must work if there is any y with o = «,.]

We claim that y = (1,,)°%, € ¢*. For that, define ") exactly as above (in terms of y and

N) so that
N
N) = ZxﬁlN)en € ¢y
n=1

and ||z™)|| < 1. Since « is linear,

N
x(N)) o (Z :pglN)en) ngv)a (€n) Z [Yn |-
n=1

But also |a(z™)| < [|a||[|[z™)| < ||«||. Thus

N
Dyl < o]
n=1

for each N. Hence Y - | |y,| < |||, and y € ¢*.

By linearity a(x) = «y(x) for any finitely nonzero z = (z1,22,...,25,0,0,...) =
N : ) . .

Y —1Zje; € co. These finitely nonzero z’s are dense in ¢y, a and «,, are continuous,

they agree on the dense set and so o = q,.

Maybe an explanation of why the finitely nonzero x’s are dense in ¢y. If x = (2,,)%; € co,
we know lim,, ,, z,, = 0. Soif € > 0 is arbitrary, then there is N so thatn > N = |z,| <
. Then

x—anen:a:—(xl,...,xN,O,O,...): (0,0,...,0,zN41,TN12,--.)
so that

= sup |z,| = max|xn\ <e.
n>N

N
xr — E Tn€n
n=1

This shows that = € ¢y and € > 0 implies there is a finitely nonzero Z with ||z — Z || < €.
That is the finitely nonzero sequences are dense in cy.




It also shows that
o) N
TECYy=T= lenen = 1\}1—{%021%"6”'
n= n—=

Moreover the only way to have z = fo’:l anen for scalars a,, is to take a,, = x,,. This
kind of property for the vectors e,, has a name. It means that (e, )2 ; is called a Schauder
basis for the Banach space cy.

Richard M. Timoney



