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Name: Solutions

1. Let p be a seminorm on a vector space E over K and let Tp be the topology on E generated
by p.

Show that p : E → R is continuous (when E has the topology Tp).

[Hint: If V ⊆ R is open and x0 ∈ p−1(V ) we can take p0 = p(x0) ∈ V and r > 0 such that
(p0−r, p0+r) ⊂ V . If x ∈ E has p(x−x0) < r then show p(x) ∈ (p0−r, p0+r) ⊂ V ⇒
x ∈ p−1(V ). (A handy form of the triangle inequality for norms is ‖y − z‖ ≥ |‖y‖ − ‖z‖|
and it also holds for seminorms.)]

Solution: Let V ⊆ R be open and we claim that p−1(V ) ∈ Tp. For that, let x0 ∈ p−1(V ).
Then p(x0) ∈ V and (since V is open in R) there is r > 0 such that (p(x0)−r, p(x0)+r) ⊂
V . If x ∈ Bp(x0, r) = {x ∈ E : p(x− x0) < r} then we have

r > p(x− x0) ≥ |p(x)− p(x0)|

(by the triangle inequality) and so p(x) ∈ (p(x0)− r, p(x0) + r) ⊂ V , from which we have
x ∈ p−1(V ). This shows Bp(x0, r) ⊂ p−1(V ).

Hence Bp(x0, r) ⊂ p−1(V ). Thus p−1(V ) ∈ Tp.

Aside. About the triangle inequality. It is usually stated as p(y + z) ≤ p(y) +
p(z) for y, z ∈ E, but the form p(x − x0) ≥ |p(x) − p(x0)| (for x, x0 ∈ E) is
equivalent.
The inequality p(x−x0) ≥ |p(x)−p(x0)| is the same as one of two inequalities

−(p(x)− p(x0)) = p(x0)− p(x) ≤ −p(x− x0) or p(x− x0) ≥ p(x)− p(x0)

and that is the same as

p(x0) ≤ p(x) + p(x− x0) or p(x) ≤ p(x0) + p(x− x0)

If you take y = x and z = x0−x, the usual form of the triangle inequality gives

p(x0) = p(y + z) ≤ p(y) + p(z) = p(x) + p(x0 − x) = p(x) + p(x− x0)

and the other inequality follows by taking y = x0, z = x − x0 (and y + z = x
then).
To show they are equivalent, note that p(x−x0) ≥ |p(x)−p(x0)| ⇒ p(x−x0) ≥
p(x)−p(x0) ⇐⇒ p(x) ≤ p(x0) +p(x−x0). So, given y, z ∈ E we can apply
this with x0 = y, x = y + z to get p(y + z) = p(x) ≤ p(x0) + p(x − x0) =
p(y) + p(z).



2. Write out a proof that (c0)
∗ = `1 (by which we mean that the elements α ∈ (c0)

∗ are
exactly those of the form α(x) = α((xn)∞n=1) =

∑∞
n=1 xnyn for y = (yn)∞n=1 ∈ `1, and

that ‖α‖ = ‖y‖1).

[Hint: There is a rather detailed proof that (`2)∗ = `2 in Proposition 1.5.2]

Solution: First if y = (yn)∞n=1 ∈ `1, it makes sense to define

αy : c0 → K by the rule αy(x) = αy((xn)∞n=1) =
∞∑
n=1

xnyn

That is because
∞∑
n=1

|xnyn| =
∞∑
n=1

|xn||yn| ≤
∞∑
n=1

‖x‖∞|yn| = ‖x‖∞
∞∑
n=1

|yn| = ‖x‖∞‖y‖1 <∞

[we can instead say that this is true by Hölder’s inequality with p = ∞ and q = 1] and so
the series

∑∞
n=1 xnyn is guaranteed to be absolutely convergent (hence convergent in K)

for any choice of x ∈ c0, y ∈ `1.

It is rather wasy to see that αy : c0 → K is linear (for each y ∈ `1). In detail if x =
(xn)∞n=1 ∈ c0, x′ = (x′n)∞n=1 ∈ c0 and λ ∈ K,

αy(x+ λx′) = αy((xn + λx′n)∞n=1) =
∞∑
n=1

(xn + λx′n)yn =
∞∑
n=1

xnyn + λ
∞∑
n=1

x′nyn

= αy(x) + λαy(x
′)

The inequality we have above tells us that

|αy(x)| =

∣∣∣∣∣
∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑
n=1

|xnyn| ≤ ‖x‖∞‖y‖1 = ‖y‖1‖x‖∞

and (since αy is linear) it tells us that αy ∈ (c0)
∗ with ‖αy‖ ≤ ‖y‖1.

In fact we can show the reverse inequality ‖αy‖ ≥ ‖y‖1. Fix y and for N ≥ 1 define
x(N) = (x

(N)
n )∞n=1 = (x

(N)
1 , x

(N)
2 , . . . , x

(N)
N , 0, 0, . . .) ∈ c0 by

x(N)
n =

{
ȳn/|yn| if yn 6= 0 and n ≤ N

0 if yn = 0 or n > N

Then ‖x(N)‖∞ = supn |x
(N)
n | ≤ 1 and

αy(x
(N)) =

∞∑
n=1

x(N)
n yn =

N∑
n=1

x(N)
n yn =

N∑
n=1

|yn|
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But |αy(x
(N))| ≤ ‖αy‖‖x(N)‖∞ ≤ ‖αy‖ and so

∑N
j=1 |yn| ≤ ‖αy‖ for each N . Let

N →∞ to get

‖y‖1 =
∞∑
n=1

|yn| ≤ ‖αy‖‖.

We now set about showing that α ∈ (c0)
∗ implies there is y ∈ `1 with α = αy.

Consider the (“standard basis”) vectors e1 = (1, 0, 0, . . .) ∈ c0, e2 = (0, 1, 0, 0, . . .) ∈ c0
and in general en = (δj,n)∞j=1 (using Dirac δ notation). Define yn = α(en). [These values
must work if there is any y with α = αy.]

We claim that y = (yn)∞n=1 ∈ `1. For that, define x(N) exactly as above (in terms of y and
N ) so that

x(N) =
N∑

n=1

x(N)
n en ∈ c0

and ‖x(N)‖ ≤ 1. Since α is linear,

α(x(N)) = α

(
N∑

n=1

x(N)
n en

)
=

N∑
n=1

x(N)
n α(en) =

N∑
n=1

|yn|.

But also |α(x(N))| ≤ ‖α‖‖x(N)‖ ≤ ‖α‖. Thus

N∑
n=1

|yn| ≤ ‖α‖

for each N . Hence
∑∞

n=1 |yn| ≤ ‖α‖, and y ∈ `1.

By linearity α(x) = αy(x) for any finitely nonzero x = (x1, x2, . . . , xN , 0, 0, . . .) =∑N
n=1 xjej ∈ c0. These finitely nonzero x’s are dense in c0, α and αy are continuous,

they agree on the dense set and so α = αy.
Maybe an explanation of why the finitely nonzero x’s are dense in c0. If x = (xn)∞n=1 ∈ c0,
we know limn→∞ xn = 0. So if ε > 0 is arbitrary, then there is N so that n > N ⇒ |xn| <
ε. Then

x−
N∑

n=1

xnen = x− (x1, . . . , xN , 0, 0, . . .) = (0, 0, . . . , 0, xN+1, xN+2, . . .)

so that ∥∥∥∥∥x−
N∑

n=1

xnen

∥∥∥∥∥ = sup
n>N
|xn| = max

n>N
|xn| < ε.

This shows that x ∈ c0 and ε > 0 implies there is a finitely nonzero x̃ with ‖x− x̃‖∞ < ε.
That is the finitely nonzero sequences are dense in c0.
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It also shows that

x ∈ c0 ⇒ x =
∞∑
n=1

xnen = lim
N→∞

N∑
n=1

xnen.

Moreover the only way to have x =
∑∞

n=1 anen for scalars an is to take an = xn. This
kind of property for the vectors en has a name. It means that (en)∞n=1 is called a Schauder
basis for the Banach space c0.

Richard M. Timoney
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