MA3422 (Functional Analysis 2) Tutorial sheet 6

[March 9, 2017]

Name:

1. Let E be a normed space and $F \subseteq E$ a linear subspace (normed by restricting the norm of E to F). Show that the restriction map

$$: E^* \to F^* : \alpha \mapsto \alpha|_F$$

is surjective.

Solution:

If α is a continuous linear functional on E, then its restriction to the subspace F will certainly be continuous and linear. So the restriction map makes sense.

The fact that the map is surjective follows directly from (a corollary of) the Hahn-Banach theorem. If $\alpha \in F^*$, then α is linear from F to \mathbb{K} and satisfies $|\alpha(x)| \leq \|\alpha\|_{F^*} \|x\|$ for all $x \in F$. So, by Hahn-Banach (applied to the seminorm $p(x) = \|\alpha\|_{F^*} \|x\|$ for $x \in E$), there is a linear extension $\beta \colon E \to \mathbb{K}$ with $|\beta(x)| \leq \|\alpha\|_{F^*} \|x\|$ for all $x \in E$.

This β is then in E^* and satisfies $\beta|_F = \alpha$. So the restriction map is surjective.

2. Let E be a normed space and $F \subseteq E$ a dense linear subspace (normed by restricting the norm of E to F). Show that the restriction map

$$: E^* \to F^* : \alpha \mapsto \alpha|_F$$

is surjective, norm preserving and bijective.

Solution: (#1)

By the previous question, the map is surjective. Every $\alpha \in F^*$ extends to some $\beta \in E^*$.

In fact $\|\beta\|_{E^*} = \|\alpha\|_{F^*}$. (We have $\|\beta\|_{E^*} \le \|\alpha\|_{F^*}$ from the use of Hahn-Banach above and since β extends α we must have $\|\beta\|_{E^*} \ge \|\alpha\|_{F^*}$ — because if $F \ne \{0\}$, then $\|\beta\|_{E^*} = \sup_{x \in E \setminus \{0\}} |\beta(x)|/\|x\| \ge \sup_{x \in F \setminus \{0\}} |\beta(x)|/\|x\| = \sup_{x \in F \setminus \{0\}} |\alpha(x)|/\|x\| = \|\alpha\|_{F^*}$.)

In fact, since F is dense in E, we have that β is uniquely determined by α — if two continuous \mathbb{K} -valued functions agree on a dense set then they have to be equal.

This shows that $\|\beta\|_{E^*} = \|\beta|_F\|_{F^*}$ for all $\beta \in E^*$ (because for $\alpha = \beta|_F \in F^*$, the unique extension is the original β).

A more fancy argument would be that the restriction map is a linear map (rather easy to verify). Since F is dense in E, if $x \in E$ has ||x|| < 1, there is a sequence $(x_n)_{n=1}^{\infty}$ in F with $\lim_{n\to\infty} x_n = x$ and $||x_n|| < 1$ for each n. We have $|\beta(x_n)| = |\alpha(x_n)| \le ||\alpha||_{F^*}$ for each n and (by continuity of β)

$$|\beta(x)| = \lim_{n \to \infty} |\beta(x_n)| \le ||\alpha||_{F^*}$$

Thus $\|\beta\| \leq \|\alpha\|_{F^*}$.

It is easy that $\|\beta\| \ge \|\alpha\|_{F^*}$. So $\|\beta\| = \|\alpha\|_{F^*}$.

A linear surjective norm-preserving map has zero kernel. Hence bijective.

Solution: (#2 without Hahn-Banach)

As before the restriction map makes sense.

If $\alpha \in F^*$, then we know that α is uniformly continuous on F. It follows then that α has a unique continuous extension to the closure E. (The idea is that α maps Cauchy sequences $(x_n)_{n=1}^\infty$ in F to Cauchy sequences $(\alpha(x_n))_{n=1}^\infty$ in \mathbb{K} , and so $\lim_{n\to\infty}\alpha(x_n)$ exists in \mathbb{K} . If we take a sequence $(x_n)_{n=1}^\infty$ in F that converges to a limit $x\in E$ we can then try to define $\beta(x)=\lim_{n\to\infty}\alpha(x_n)$. That limit will exist because $(x_n)_{n=1}^\infty$ will be Cauchy in E and so in E. We need to check that if $(y_n)_{n=1}^\infty$ is a different sequence in E that converges to the same limit E is an expectation of E that converges to the same limit E is an expectation of the sequence chosen), but that follows because E is also a sequence in E converging to the same E and so E is an extension because if E is an extension because if E we can take E in E for all E and so E is an extension because if E is an extension E is an extension E is an extension E in E is an extension E in E

$$|\alpha(x_n) - \alpha(z_n)| \le ||\alpha||_{F^*} ||x_n - z_n||$$

holds for all n we can let $n \to \infty$ to get $|\beta(x) - \beta(z)| \le ||\alpha||_{F^*} ||x - z||$. This is all a standard result, which we might just quote. We need \mathbb{K} to be complete.)

We can also check that β is linear. If we take $x, z \in E$ and $\lambda \in \mathbb{K}$ and then sequences $(x_n)_{n=1}^{\infty}$ and $(z_n)_{n=1}^{\infty}$ in F as we just did then $\lim_{n\to\infty} x_n + \lambda z_n = x + \lambda z$ and so

$$\beta(x + \lambda z) = \lim_{n \to \infty} \alpha(x_n + \lambda z_n) = \lim_{n \to \infty} \alpha(x_n) + \lambda \alpha(z_n) = \beta(x) + \lambda \beta(z)$$

We can also see now that we have got as much as we got from the Hahn-Banach theorem because we have that the Lipschitz constant of β is no bigger than that of α , so the norm of β is also no bigger than $\|\alpha\|_{F^*}$.

We could finish off the norm preserving part as before or we could take $x \in E \setminus \{0\}$ and choose a sequence $(x_n)_{n=1}^{\infty}$ in $F \setminus \{0\}$ with $\lim_{n \to \infty} x_n = x$. Then

$$\frac{|\beta(x)|}{\|x\|} = \lim_{n \to \infty} \frac{|\alpha(x_n)|}{\|x_n\|} \le \|\alpha\|_{F^*}.$$

It follows that $\|\beta\|_{E^*} \leq \|\alpha\|_{F^*}$. We can notice again that $\|\beta\|_{E^*} \geq \|\alpha\|_{F^*}$ is easy.

Richard M. Timoney