
MA3422 (Functional Analysis 2) Tutorial sheet 5
[February 23, 2017]

Name: Solutions

1. Let E be a Banach space and recall B(E) is a Banach algebra. If T ∈ B(E) has ‖T‖ < 1,
show that S =

∑∞
n=0 T

n = idE + T + T 2 + · · · converges to some S ∈ B(E) and that
S(idE − T ) = idE = (idE − T )S. [Hint: absolutely convergent series in a Banach space
are convergent.]

Solution: We know ‖T 2‖ ≤ ‖T |‖2, ‖T 3‖ = ‖T 2T‖ ≤ ‖T 2‖‖T‖ ≤ ‖T 3‖ and (by induc-
tion on n) we can see that ‖T n‖ ≤ ‖T‖n for n = 1, 2, . . .. For n = 0, we could agree that
T 0 = idE and that ‖T‖0 is to mean 1, and then we even have ‖T n‖ ≤ ‖T‖n for n = 0
also.

So the series for S is
∑∞

n=0 T
n and it is abssolutely convergent because

∞∑
n=0

‖T n‖ ≤
∞∑
n=0

‖T‖n =
1

1− ‖T‖
<∞

(geometric series with ration < 1 (in absolute value)).

Since B(E) is a Banach space, we can conclude that

S =
∞∑
n=0

T n = lim
n→∞

idE + T + T 2 + · · ·+ T n

exists in B(E).
It remains to justify the assertions that S(idE − T ) = idE = (idE − T )S.

To make this a convincing argument, observe that left (and right) multiplication by T gives
a bounded (continuoous) linear operator on B(E). That is, if we defineLT : B(E)→ B(E)
by LT (U) = TU , then LT is linear (by the algebra properties of B(E)) and the Banach
algebra property of submultiplicativity of the norm gives ‖LT (U)‖ = ‖TU‖ ≤ ‖T‖‖U‖
for each U ∈ B(E). So ‖LT‖ ≤ ‖T‖ and LT is bounded.

The same argument applies to RT (U) = UT (right multiplication).

Thus

S(idE−T ) = S−ST = lim
n→∞

idE+T +T 2+ · · ·+T n− ( lim
n→∞

idE+T +T 2+ · · ·+T n)T

From continuity of RT we can bring the T inside the limit and get

= lim
n→∞

idE + T + T 2 + · · ·+ T n − lim
n→∞

((idE + T + T 2 + · · ·+ T n)T )

= lim
n→∞

idE + T + T 2 + · · ·+ T n − lim
n→∞

(T + T 2 + · · ·+ T n+1)

= lim
n→∞

idE − T n+1



(by the lmit of a difference). This is just idE since we know ‖T n+1‖ ≤ ‖T‖n+1 → 0 as
n→∞.

The argument for (idE−T )S = idE is just the same, but using LT instead of RT . It begins

(idE − T )S = S − TS.

Aside
This little fact is usually proved as one of the first lemmas for spectral theory of
(bounded) linear operators T on (complex) Banach spaces E.
The conclusion can be stated that S is an inverse (multiplicative inverse) for
idE − T in B(E).
The spectrum of T ∈ B(E) is defined as

σ(T ) = {λ ∈ C : (λidE − T ) is not invertible in B(E)}

While you could define this for the case of a Banach space E over R in just the
same way (replace λ ∈ C by λ ∈ R), quite a few things don’t work so well over
R. (In the case of finite dimensional E, we can choose a basis and reprsent T
by a square matrix A. Then σ(T ) is the set of eigenvalues of A. You may recall
that real matrices may not have real eigenvalues, but they will have complex
ones.)
So what our problem shows (in this language) is

‖T‖ < 1⇒ σ(T ) ⊆ {λ ∈ C : |λ| ≤ 1}

and we could rescale T in order to show more generally

σ(T ) ⊆ {λ ∈ C : |λ| ≤ ‖T‖}

But the topic of spectral theory is one of many that we will not have time to investigate.
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2. Let G be a group. Show that G contains a maximal abelian subgroup. [Hint: a subgroup
H ⊆ G is a subset that contains the identity element eG of G and satisfies x, y ∈ H ⇒
xy−1 ∈ H . These properties summarise thatH is also a group with the same multiplication
as G. To say that H is abelian means that x, y ∈ H ⇒ xy = yx.]

Solution:
First a digression, or an expansion of the Hint.

We should perhaps recall the relevant definitions before we proceed to the solution itself.

A group G is a set with a binary operation : G × G → G (which we call multiplication
and where we denote the image of (g1, g2) ∈ G×G (or the product of g1 times g2 in usual
terminology) by g1g2. The group is supposed to satisfy additional properties:

(i) (g1g2)g3 = g1(g2g3) (for all g1, g2, g3 ∈ G, the associative law);

(ii) there exists an element e ∈ G so that eg = ge = g for all g ∈ G (existence of identity
element);

(iii) for each g ∈ G there exists h ∈ G with gh = hg = e (existence of inverses).

A group G is called abelian if it satisfies g1g2 = g2g1 for each g,g2 ∈ G.

If G is a group, a subset H ⊆ G is called a subgroup of G if G becomes a group in the
same product operation as G (restricted to H). The subgroup H cannot be the empty set
(because groups are never empty — they have identity elements). The identity element of
H must be the identity of G (because if f ∈ H is the identity of H , then ff = f . Multiply
both sides by the inverse of f in G to get f = e = the identity element of G. It follows
then that the inverse of h ∈ H must be the same whether we consider it as the inverse in
the subgroup or the inverse in G.

So subgroups have to be nonempty subsets of G (in fact they must contain the identity e of
G) and we must have two other properties for H ⊂ G to be a subgroup:

h1, h2 ∈ H ⇒ h1h2 ∈ H and h ∈ H ⇒ h−1 ∈ H.

These can be combined into an equivalent property:

h1, h2 ∈ H ⇒ h1h
−1
2 ∈ H.

So a subgroup is H ⊆ G with e ∈ H and this property.

An abelian subgroup is a subset H ⊂ G with the properties:

e ∈ H, h1, h2 ∈ H ⇒ h1h
−1
2 ∈ H and h1h2 = h2h1.

Notice that if the whole group G is abelian, then H = G is an abelian subgroup of itself
and it is the maximal (in fact the largest) abelian subgroup as all subgroups are certainly
contained in G. However, it does not really help the proof with Zorn’s lemma to notice
that this is so.
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To apply Zorn’s lemma we consider the set S of all abelian subgroups of G, ordered by set
inclusion ⊆. So

S = {H : H a subgroup of G,H abelian}

and the partial order on S is ⊆.

We know that S 6= ∅ because H = {e} is always an abelian subgroup of G (e the identity
element of G).

To apply Zorn’s lemma, we need to show that each nonempty chain C ⊂ S has an upper
bound in S. Put

K =
⋃
H∈C

H.

We claim that K ∈ S.

It is clear that K ⊆ G since H ⊆ G for each H ∈ C. Also e ∈ K since C 6= ∅ ⇒ ∃H ∈
C ⇒ e ∈ H ⊆ K. We have to show that for any k1, k2 ∈ K we must have k1k−12 ∈ K and
k1k2 = k2k1.

So fix k1, k2 ∈ K. Then there exist H1, H2 ∈ C with k1 ∈ H1 and k2 ∈ H2. As C is
a chain, we have H1 ⊆ H2 or else H2 ⊇ H1. In the case H1 ⊆ H2, let H = H2 and in
the other case H2 ⊇ H1, let H = H1. Now H ∈ C and k1, k2 ∈ H . As H is an abelian
subgroup of G, we know k1k

−1
2 ∈ H ⊆ K and k1k2 = k2k1. Thus K ⊂ G is an abelian

subgroup of G and so K ∈ S.

As H ⊆ K holds for each H ∈ C, we have that K is an upper bound for C.

Thus we have shown that every chain C in S has an upper bound. By Zorn, S has a
maximal element — which means that there is a maximal abelian subgroup of G.

Richard M. Timoney
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