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Name: Solutions

1. Let E = `2 ∩ `1 with the norm ‖ · ‖2 and F = `1. Define T : E → F by Tx = x. Show
that T is not bounded but has closed graph. [Hint: consider x = (1, 1, . . . , 1, 0, 0, . . .) with
n ones and the rest of the terms 0 to show that T is not bounded.]

Solution: Solution: As in the hint consider xn = (1, 1, . . . , 1, 0, 0, . . .) with n ones. Then
‖xn‖2 =

√
12 + 12 + · · · 12 + 0 =

√
n while ‖Txn‖ = ‖xn‖1 = 1 + 1 + · · ·+ 1 + 0 = n.

There is no finite constant C with n ≤ C
√
n for all n and hence T is not bounded.

Suppose now (xn, yn) is in the graph of T for all n (different xn from above) and (xn, yn)→
(x, y) in E × F (as n→∞). So yn = Txn = xn. Also xn → x in E and yn = xn → y in
F . So ‖xn − x‖2 → 0 as n→∞ and ‖xn − y‖1 → 0 as n→∞.

Then x ∈ `2 and y ∈ `1. But also, the kth term of xn converges (in K) to the kth term of x
(for each k ∈ N) and to the kth term of y.

That is because if xn,k is the kth term of xn and x∞,k is the kth term of x, then |xn,k −
x∞,k| ≤ ‖xn − x‖2 and a similar fact holds for the norm ‖ · ‖1.
So x = y ∈ `2 ∩ `1. That means (x, y) = (x, x) is in the graph of T and thus the graph is
closed.

An alternative argument can be based on the fact that `1 ⊂ `2 and the inclusion
map is continuous (bounded linear, even norm one — see Examples 2.6.6 in
MA3421 notes). So since xn → x in `1, it must be that xn → x in `2, or
limn→∞ ‖xn − x‖2 = 0. As xn → y in `2 norm, we must have x = y.

Why does this not contradict the closed graph theorem?

Solution: The closed graph theorem requires E and F to be Banach spaces, and T to be a
linear operator. It says that if the graph of T is closed, then T must be bounded — which
is not the case here.

We know that T is linear and F is Banach and so it must be that E is not Banach, not
complete.

[I think we don’t need to explain that in detail.
We can view E as a linear subspace of `2 (and we use the norm ‖ · ‖2). For E
to be complete in the norm of `2, it would have to be closed in `2. But it is not
closed — in fact it is dense in `2 since it contains all finitely nonzero sequences.
So if it were closed we would have E = `2 ∩ `1 = `2, so that `2 ⊆ `1 — which
is false. An example is (1/n2/3)∞n=1 ∈ `2 because

∑∞
n=1 1/n

4/3 < ∞ but is not
in `1 because

∑∞
n=1 1/n

2/3 =∞.]



2. If E and F are Banach spaces and T : E → F is linear, we define the separating space ST

of T by

ST = {y ∈ F : ∃(xn)
∞
n=1 in E with lim

n→∞
xn = 0 and lim

n→∞
T (xn) = y}

Show that if T has closed graph then ST = {0}.
Solution: If T is bounded, it is continuous and in particular continuous at 0 ∈ E. So if
(xn)

∞
n=1 is a sequence in E with limn→∞ xn = 0, then limn→∞ T (xn) = T (0) = 0. Hence

the only possible element of ST is 0.

We do indeed have 0 ∈ ST because we can consider the constant sequence xn = 0 (all
n ≥ 1). It satisfies limn→∞ xn = 0 and limn→∞ T (xn) = limn→∞ T (0) = T (0) = 0,
so that 0 ∈ ST . [In fact any linear transformation T would have 0 ∈ ST , whether T is
continuous or not.]
Aside: In fact for any linear operator T : E → F between normed spaces, ST is a closed
linear subspace of F (something that is not so hard to verify) and the same proof as above
shows that ST = {0} if T is bounded.

It is also true (and fairly elementary to prove using linearity) that T has closed graph if and
only if ST = {0}.

3. If E is a normed space, a projection on E means a bounded linear operator P : E → E
such that P ◦ P = P .

Show that if P is a projection on E, then E = P (E) ⊕ kerP , a direct sum of closed
subspaces, and that there is a constant C > 0 (depending on P ) such that for y ∈ P (E),
z ∈ kerP ,

‖y + z‖ ≤ ‖y‖+ ‖z‖ ≤ C(‖y + z‖)
holds.

Solution: As the range and kernel of a linear transformation we know that P (E) and kerP
are vector subspaces of E.

For x ∈ E we can write x = P (x) + (x− P (x)). Then P (x) ∈ P (E) is clear and we can
check

P (x− P (x)) = P (x)− (P ◦ P )(x) = P (x)− P (x) = 0⇒ x− P (x) ∈ kerP.

Thus E = P (E) + kerP . It is a direct sum since if y = z for y ∈ P (E) and z ∈ kerP ,
then y = P (t) for some t ∈ E and so

P (P (t)) = P (t)⇒ P (y) = y ⇒ P (z) = y ⇒ 0 = y.

Thus P (E) ∩ kerP = {0} and E = P (E)⊕ kerP (a vector space direct sum)1.

1The idea is then that each x ∈ E must have a unique expression as x = y + z with y ∈ P (E) and z ∈ kerP
because if we have another such expression x = y′+z′ for x, then y−y′ = z′−z ∈ P (E)∩kerP = {0} ⇒ y = y′

and z = z′.
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The subspace kerP is clearly closed (being the inverse image of {0} under the continuous
map P ) and we can argue that P (E) is closed because if (yn)∞n=1 is a sequence in P (E)
that converges to a limit x ∈ E, then

x = lim
n→∞

yn = lim
n→∞

P (yn) = P (x)

(by continuity of P ) and so x ∈ P (E).

As regards the inequalities ‖y + z‖ ≤ ‖y‖+ ‖z‖ holds by the triangle inequality. Since P
is a bounded linear operator there is C > 0 so that ‖P (x)‖ ≤ C‖x‖ for each x ∈ E. Thus

‖x− P (x)‖ ≤ ‖x‖+ ‖P (x)‖ ≤ (C + 1)‖x‖.

Taking x = y + z with y ∈ P (E), z ∈ kerP we have

‖y‖+ ‖z‖ = ‖P (x)‖+ ‖x− P (x)‖ ≤ (2C + 1)‖x‖ = (2C + 1)‖y + z‖.

Aside: If a Banach space E is a vector space direct sum of two closed subspaces F and G,
then it means that each x ∈ E can be expressed in a unique way as x = y + z with y ∈ F
and z ∈ G.

So the map T : F ⊕1 G→ E defined by T (y, z) = y + z is a bijection. We can see easily
that T is linear and bounded as ‖T (y, z)‖E = ‖y + z|E ≤ ‖y‖E + ‖z‖E = ‖(y, z)‖1.
Since F and G are closed in E, and E is complete, F and G are Banach spaces, and so is
F ⊕1 G. By the inverse mapping theorem corollary to the open mapping theorem, T−1 is
also bounded.

That is ‖T−1(x)‖1 ≤ ‖T−1‖‖x‖ for x ∈ E. If we write x = y + z with y ∈ F and z ∈ G,
then T−1(x) = (y, z) and we have

‖(y, z)‖1 = ‖y‖+ ‖z‖ ≤ ‖T−1‖‖y + z‖

for y ∈ F and z ∈ G.

We can dsefine a projection P : E → E by

P (y + z) = y (y ∈ F, z ∈ G)

and then it follows that P is linear, P (E) = F , kerP = G and ‖P‖ ≤ ‖T−1‖.

Richard M. Timoney
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