MA3422 (Functional Analysis 2) Tutorial sheet 3

[February 9, 2017]

Name: Solutions

On this sheet H denotes a separable Hilbert space.

For $T \in \mathcal{B}(H)$, we define T to be *positive* (or sometimes called positive semidefinite) if it is true that $\langle Tx, x \rangle \geq 0$ for each $x \in H$. [So that means $\langle Tx, x \rangle$ is real and nonnegative.] We write $T \geq 0$ in this case.

1. Show that $T \in \mathcal{B}(H) \Rightarrow T^*T \geq 0$

Solution: For $x \in H$, we have

$$\langle (T^*T)x, x \rangle = \langle T^*(Tx), x \rangle = \overline{\langle x, T^*(Tx) \rangle} = \overline{\langle Tx, Tx \rangle} = \|Tx\|^2 \ge 0.$$

(You could also use $(T^*)^* = T$, which is established by $\langle T^*x, y \rangle = \overline{\langle y, T^*x \rangle} = \overline{\langle Ty, x \rangle} = \langle x, Ty \rangle$. Then you can say $\langle T^*(Tx), x \rangle = \langle Tx, Tx \rangle \geq 0$.)

2. Show that $T \in \mathcal{B}(H)$ and $T \geq 0$ implies $T^* = T$. [Hint: consider $\langle T(x \pm y), x \pm y \rangle$ and $\langle T(x \pm iy), x \pm iy \rangle$, for $x, y \in H$. Review the proof of the parallelogram identity. Show $\operatorname{Im}\langle Tx, y \rangle = \operatorname{Im}\langle x, Ty \rangle$ and the same for the real parts.]

Solution: We have

$$\langle T(x+y), x+y \rangle = \langle Tx + Ty, x+y \rangle = \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$$

$$\langle T(x-y), x-y \rangle = \langle Tx - Ty, x-y \rangle = \langle Tx, x \rangle - \langle Tx, y \rangle - \langle Ty, x \rangle + \langle Ty, y \rangle$$

So both are positive and we can subtract to get

$$2(\langle Tx, y \rangle + \langle Ty, x \rangle) \in \mathbb{R}$$

and so

$$\operatorname{Im}(\langle Tx, y \rangle + \langle Ty, x \rangle) = 0.$$

This gives

$$\operatorname{Im}(\langle Tx, y \rangle - \langle x, Ty \rangle) = 0$$

since
$$\langle Ty, x \rangle = \overline{\langle x, Ty \rangle}$$
.

[Actually we could manage it another way, without subtracting, because two of the terms on the right of the expansion of $\langle T(x+y), x+y \rangle$ are also positive, and therefore real. They are $\langle Tx, x \rangle$ and $\langle Ty, y \rangle$.]

So we have $\operatorname{Im}\langle Tx,y\rangle=\operatorname{Im}\langle x,Ty\rangle.$

We can repeat with iy instead of y, or just replace y by iy to get

$$\operatorname{Im}\langle Tx, iy \rangle = \operatorname{Im}\langle x, iTy \rangle.$$

That is

$$\operatorname{Im}(-i\langle Tx, y\rangle) = \operatorname{Im}(-i\langle x, Ty\rangle),$$

and gives

$$Re(-\langle Tx, y \rangle) = Re(-\langle x, Ty \rangle).$$

So $\operatorname{Re}\langle Tx, y \rangle = \operatorname{Re}\langle x, Ty \rangle$.

Combining the real and imaginary parts, we must have

$$\langle Tx, y \rangle = \langle x, Ty \rangle.$$

As this holds for all $x, y \in H$, it means that $T^* = T$.

Richard M. Timoney