Name: Solutions

1. In $L^2[0,1]$ take f(t) = t and compute the orthogonal projection of f onto

$$span\{1, e^{2\pi i t}, e^{-2\pi i t}\}$$

Solution: Recall that the functions $\phi_0(t) = 1$, $\phi_1(t) = e^{2\pi i t}$ and $\phi_{-1}(t) = e^{-2\pi i t}$ are orthonormal vectors in $L^2[0, 1]$.

[If we want to check that we could note that
$$|\phi_n(t)| = 1$$
 for $t \in [0,1]$ so that $\|\phi_n\|_2^2 = \int_{[0,1]} |\phi_n(t)|^2 dt = 1$. Also, if $n \neq m$, then $\phi_n(t)\overline{\phi_m(t)} = e^{2\pi i (n-m)t}$
and so $\langle \phi_n, \phi_m \rangle = \int_{[0,1]} \phi_n(t)\overline{\phi_m(t)}\phi_n(t)\overline{\phi_m(t)} dt = \left[\frac{1}{2\pi i (n-m)t}e^{2\pi i (n-m)t}\right]_0^1 = 0.]$

Since then we already have an orthonormal base is for the span, we do not need to apply Gram-Schmidt to get one.

We know that the orthogonal projection of f onto the span is

$$g = \langle f, \phi_0 \rangle \phi_0 + \langle f, \phi_1 \rangle \phi_1 + \langle f, \phi_{-1} \rangle \phi_{-1}$$

We compute

$$\begin{aligned} \langle f, \phi_0 \rangle &= \int_{[0,1]} f(t) \overline{\phi_0(t)} \, dt \\ &= \int_{[0,1]} t \, dt \\ &= [t^2/2]_0^1 = 1/2 \\ \langle f, \phi_1 \rangle &= \int_{[0,1]} f(t) \overline{\phi_1(t)} \, dt \\ &= \int_{[0,1]} t e^{-2\pi i t} \, dt \\ &= \int_{[0,1]} t d \left(\frac{e^{-2\pi i t}}{-2\pi i} \right) \, dt \\ &= \left[t \left(\frac{e^{-2\pi i t}}{-2\pi i} \right) \right]_0^1 - \int_{[0,1]} \frac{e^{-2\pi i t}}{-2\pi i} \, dt = 1/(-2\pi i) - 0 = i/(2\pi) \end{aligned}$$

$$\begin{aligned} \langle f, \phi_{-1} \rangle &= \int_{[0,1]} f(t) \overline{\phi_{-1}(t)} \, dt \\ &= \int_{[0,1]} t e^{2\pi i t} \, dt \\ &= \left[t \left(\frac{e^{2\pi i t}}{2\pi i} \right) \right]_0^1 - \int_{[0,1]} \frac{e^{2\pi i t}}{2\pi i} \, dt = 1/(2\pi i) - 0 = -i/(2\pi) \end{aligned}$$

Thus

$$g(t) = \frac{1}{2}1 + \frac{i}{2\pi}e^{2\pi it} - \frac{i}{2\pi}e^{-2\pi it}$$

= $\frac{1}{2} + \frac{i}{2\pi}(\cos(2\pi t) + i\sin(2\pi t)) - \frac{i}{2\pi}(\cos(2\pi t) - i\sin(2\pi t))$
= $\frac{1}{2} - \frac{1}{\pi}\sin(2\pi t))$

How would you find is the (shortest) distance from f to that subspace? [You need not actually compute it.]

Solution: As g is the closest point in the span to f, we should compute $||f - g||_2$.

Since we have simplified g above, this is not so difficult to compute in fact. It is

$$\|f - g\|_2 = \sqrt{\int_{[0,1]} (t - 1/2 + (1/\pi)\sin(2\pi t))^2 dt}$$

= $\sqrt{\int_{[0,1]} 1/4 - t + t^2 - (1/\pi)\sin(2\pi t) + (2t/\pi)\sin(2\pi t) + 1/\pi^2\sin^2(2\pi t) dt}$

and that is $\sqrt{1/12 - 1/(2\pi^2)}$.

2. Let $1 \le p \le \infty$ with $p \ne 2$. Show that ℓ^p is not a Hilbert space. [Hint: try the parallelogram identity for e_1 and e_2 .]

Solution: For $1 \le p < \infty$ we have

$$\begin{aligned} \|e_1 \pm e_2\|_p &= \|(1, \pm 1, 0, 0, \ldots)\|_p \\ &= (1^p + |-1|^p + 0)^{1/p} = 2^{1/p} \end{aligned}$$

while for $p = \infty$,

$$||e_1 \pm e_2||_{\infty} = ||(1, \pm 1, 0, 0, \ldots)||_{\infty}$$

= sup(1, |-1|, 0) = 1

For all *p* we find $||e_1||_p = 1 = ||e_2||_p$ and so

$$||e_1 + e_2||_p^2 + ||e_1 - e_2||_p^2 = 2(2^{2/p}) \neq 4 = 2(||e_1||_p^2 + ||e_2||_p^2)$$

if $p \neq 2$. (For short, we have included $p = \infty$ with $2^{2/\infty}$ meaning 1.) So the parallelogram identity $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ fails to hold for $x = e_1$ and $y = e_2$ (and the norm $|| \cdot ||_p$ for ℓ^p) if $p \neq 2$.

Thus there is no inner product on ℓ^p giving rise to the norm $\|\cdot\|_p$.

[Aside: A stronger result is that there is no equivalent norm on ℓ^p for which it is a Hilbert space, but that is much harder to establish.]

Richard M. Timoney (version of April 30, 2017)