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Prof. R. Timoney

Instructions to Candidates:

Credit will be given for the best 3 questions answered.

All questions have equal weight.

‘Formulae & tables’ are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indi-
cate the make and model of your calculator on each answer book used

In the questions K denotes one of R or C.

You may not start this examination until you are instructed to do so by the Invigi-
lator.
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1. (a) [6 points] Define the notions of an inner product space (over K) and of a Hilbert

space. Give a finite dimensional and an infinite dimensional example of a Hilbert

space (without proofs).

Solution:

Definition 1.1. An inner product space (also known as a pre-Hilbert space)

is a vector space V over K (= R or C) together with a map

〈·, ·〉 : V × V → K

satisfying (for x, y, z ∈ V and λ ∈ K):

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(ii) 〈λx, y〉 = λ〈x, y〉

(iii) 〈y, x〉 = 〈x, y〉

(iv) 〈x, x〉 ≥ 0

(v) 〈x, x〉 = 0⇒ x = 0

An inner product on V gives rise to a norm

‖x‖ =
√
〈x, x〉.

If the inner product space is complete in this norm (or in other words, if it is

complete in the metric arising from the norm, or if it is a Banach space with this

norm) then we call it a Hilbert space.

Examples 1.2. (i) Cn with the inner product 〈z, w〉 =
∑n

j=1 zjwj is a Hilbert

space (over K = C). (Here we mean that z = (z1, z2, . . . , zn) and w =

(w1, w2, . . . , wn).)

(ii) `2 with the inner product

〈a, b〉 =
∞∑
j=1

ajbj

is a Hilbert space over K (where we mean that a = {aj}∞j=1, b = {bj}∞j=1).
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(b) [7 points] Outline the steps required to show that a separable inner product space

has an orthonormal basis.

Solution: Starting with a countable dense subset S = {x1, x2, . . .} in an inner

product space V we define {ψ1, ψ2, . . .} by ψ1 = xj for the smallest j with xj 6= 0

and ψk+1 = xj for the smallest j with xj /∈ span{ψ1, ψ2, . . . , ψj}. Then xn ∈

span{ψ1, ψ2, . . . , ψn}, S ⊂ span{ψ1, ψ2, . . .} and so span{ψ1, ψ2, . . .} is dense in

V .

Then apply Gram-Schmidt to find an orthonormal sequence φ1, φ2, . . . with span{φ1, . . . , φn} =

span{φ1, . . . , φn} for each n.

Being orthonormal with dense linear span φ1, φ2, . . . is an orthonormal basis for

V (as can be proved by using the fact that if x ∈ V , then
∑n

j=1〈x, φj〉φj is the

closest element in span{φ1, . . . , φn} to x).

(c) [7 points] State the Riesz representation theorem for separable Hilbert spaces and

outline the steps required for a proof of it.

Solution:

Theorem 1.3 (Riesz representation theorem). Let H be a (separable) Hilbert

space and α ∈ H∗. Then there exists y ∈ H such that

α(x) = 〈x, y〉 for all x ∈ H.

Conversely, given y ∈ H, αy(x) = 〈x, y〉 defines an element of H∗ and more-

over ‖αy‖ = ‖y‖.

For the proof, the case of a finite dimensional H is quite easy. Take an orthonormal

basis {φ1, . . . , φn} for H and define y by

y =
n∑
j=1

α(φj)φj

In the case of `2 we do something similar using the standard basis e1, e2, . . .

y =
∞∑
n=1

α(φn)φn
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but we have to establish that this defines an element of `2. The idea there is that∑n
j=1 |α(φj)|2 ≤ ‖α‖2. There is a little more argument to show α(x) = 〈x, y〉 for

general x (using convergence).

The case of a general separable infinite dimensional H can be reduced to `2 since

there is an isometric linear isomorphism T : H → `2.

The converse part is a consequence of Cauchy-Schwarz and works the same way

for all H. Cauchy-Schwarz implies ‖αy‖ ≤ ‖y‖ and then (if y 6= 0) considering

the vector x = y/‖y‖ shows ‖αy‖ ≥ ‖y‖.
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2. (a) [6 points] State the closed graph theorem. What is the other major result used in

its proof?

Solution:

Theorem 2.1 (Closed graph theorem). If E,F are Banach spaces and T : E →

F is a linear transformation, then T is bounded if and only if its ‘graph’

{(x, y) ∈ E × F : y = Tx}

is a closed subset of E × F in the product topology.

The proof uses the open mapping theorem, the consequence that bijective bounded

linear operators between Banach spaces have bounded inverses.

(b) [7 points] State the Hahn-Banach theorem and use it to show that there is a

continuous linear functional α : C[0, 1] → K with α(f) = 0 for f(x) ≡ 1 and

α(g) = 1 for g(x) ≡ x.

Solution:

Theorem 2.2 (Hahn-Banach Theorem for K). Let E be a vector space over

K and M a vector subspace. Suppose p : E → [0,∞) is a seminorm on E and

suppose

α : M → K

is a linear functional satisfying

|α(x)| ≤ p(x) for all x ∈M.

Then there exists an extension β : E → K of α which is linear and satisfies

(i) β(x) = α(x) for all x ∈M (i.e. β extends α)

(ii) |β(x)| ≤ p(x) for all x ∈ E.

To use the theorem as requested, let M = span{1, x} = span{f, g}. Define

α : M → K by α(λf + µg) = µ. This is well defined since f and g are linearly

independent: if λf + µg = 0 then λf(0) + µg(0) = 0, so λ = 0; and then also

µ = 0.
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Since M is finite dimensional α is bounded on M and so there is C > 0 with

|α(h)| ≤ C‖h‖ for h ∈ M . (Here ‖h‖ is the norm of C[0, 1], the supnorm.) By

applying Hahn-Banach with p(x) = C‖x‖ (a seminorm on C[0, 1]) we know that

α can be extended to a bounded linear functional on C[0, 1]

(c) [7 points] If E is a normed space, define the caonical embedding J : E → E∗∗ of

E in its bidual and show that J is linear and isometric.

Solution: If E is any normed space, then there is a natural linear map

J : E → E∗∗ = (E∗)∗

given by

J(x) = point evaluation at x.

In other words, for each x ∈ E

J(x) : E∗ → K

J(x)(α) = α(x).

The map J(x) : E∗ → K is linear since

J(x)(α + λβ) = (α + λβ)(x) = α(x) + λβ(x) = J(x)(α) + λJ(x)(β)

and

|J(x)(α)| = |α(x)| ≤ ‖α‖ ‖x‖

shows that J(x) is bounded on E∗. Thus J(x) ∈ (E∗)∗ and, in fact,

‖J(x)‖(E∗)∗ ≤ ‖x‖.

By a corollary to Hahn-Banach, given x ∈ E, there exists α ∈ E∗, with ‖α‖ =

1 and |α(x)| = ‖x‖ = ‖α‖ ‖x‖. This shows that ‖J(x)‖ ≥ ‖x‖. Therefore

‖J(x)‖ = ‖x‖ and J is an isometry onto its range. It follows that J must be

injective.
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3. (a) [6 points] Give the definition of a locally convex topological vector space and show

that if E is such a space, U ⊆ E is open and x0 ∈ E, then x0 + U must also be

open.

Solution:

Definition 3.1. A topological vector space is a vector space E over K together

with a topology T on E such that

(i) addition E × E → E ((x, y) 7→ x + y) is continuous (using the product

topology on E and the given topology on E);

(ii) scalar multiplication K× E → E ((λ, x) 7→ λx) is continuous.

Let E, x0 and U be as given.

Since x 7→ (−x0, x) : E → E×E and (x, y) 7→ x+y : E×E → E are continuous,

so is the composition x 7→ −x0 + x continuous. The inverse image of U under

this map is {x : −x0 + x ∈ U} = x0 + U and so x0 + U is open.

(b) [7 points] If E is a normed space, define the weak topology on E and the weak*-

topology on E∗.

Solution:

Definition 3.2. If E is normed space then the weak topology on E is the

topology generated by the seminorms

pα(x) = |α(x)| (α ∈ E∗).

Definition 3.3. If E is normed space then the weak topology on the dual E∗

is the topology generated by the seminorms

px(α) = |α(x)| (x ∈ E).

(c) [7 points] Show that if E is infinite dimensional and if U ⊆ E is open for the weak-

topology with 0 ∈ U , then U contains a vector subspace of E of finite codimension

in E.
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Solution: As U is open in the weak topology and contains 0, there must be n ∈ N,

α1, α2, . . . , αn ∈ E∗ and r1, r2, . . . , rn > 0 so that

|αj(x)| < rj for each j with 1 ≤ j ≤ n⇒ x ∈ U

But then x ∈
⋂n
j=1 kerαj ⇒ x ∈ U and

⋂n
j=1 kerαj is a vector subspace of E of

codimension at most n.
Longer justification for the above rather terse explanation:

A base for the weak toplogogy consists of finite intersections
⋂n
j=1 Uj of sets Uj

that are open for a seminorm pαj(x) = |αj(x)| (with αj ∈ E∗). So if 0 ∈ U

with U open in the weak topology, there is such a basic open set
⋂n
j=1 Uj with

0 ∈
⋂n
j=1 Uj ⊂ U .

As 0 ∈ Uj and Uj open with respect to the topology for the seminorm pαj , there

is rj > 0 with

Bpαj
(0, rj) ⊂ Uj

(or such that x ∈ E, |αj(x− 0)| < rj ⇒ x ∈ Uj). So

|αj(x)| < rj for each j with 1 ≤ j ≤ n⇒ x ∈ U

Even longer:

If 0 ∈ U and U ⊂ E open for the weak toplogy, we know there is a seminorm

q : E → [0,∞ on E that is continuous for the weak topology and has

Bq(0, 1) ⊂ U

Also q satisfies

q(x) ≤ C1|α1(x)|+ · · ·+ Cn|αn(x)|

for some α1, . . . , αn ∈ E∗ and constants C, . . . , Cn > 0. Take rj = 1/(nCj) and

then

|αj(x)| < rj for each j with 1 ≤ j ≤ n⇒ q(x) <
n∑
j=1

Cjrj =
n∑
j=1

1

n
= 1⇒ x ∈ U
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4. (a) [8 points] In H = L2[0, 1] use the Gram-Schmidt process to find an orthonormal

basis for

span{1, x}.

Solution: Let ψ1(x) = 1 and ψ2(x) = x.

The first step of Gram-Schmidt is to take φ1 = ψ1/‖ψ1‖ and so we need to

calculate

‖ψ1‖ =

√∫ 1

0

|ψ1(x)|2 dx =

√∫ 1

0

1 dx = 1

So ψ1(x) ≡ 1.

The next step is to compute ψ2 − 〈ψ2, φ1〉φ1 (and later normalise that).

〈ψ2, φ1〉 =

∫ 1

0

x1̄ dx = [x2/2]10 = 1/2

So ψ2 − 〈ψ2, φ1〉φ1 is x− 1/2.

‖x− 1/2‖2 =

√∫ 1

0

(x− 1/2)2 dx

=

√∫ 1

0

x2 − x+ 1/4 dx

=
√

[x3/3− x2/2 + x/4]10

=
√

1/3− 1/2 + 1/4 =
√

1/12

So φ2(x) =
√

12(x− 1/2).

The orthonormal basis is {φ1, φ2}.

(b) [12 points] Let E = `2 ∩ `4 with the norm ‖ · ‖4 and F = `2. Define T : E → F

by Tx = x. Show that T is not bounded but has closed graph.

Solution: Consider xn = (1, 1, . . . , 1, 0, 0, . . .) with n ones. Then ‖xn‖4 = (14 +

14 + · · · 14 + 0)1/4 = n1/4 while ‖Txn‖ = ‖xn‖2 = (12 + 12 + · · ·+ 12 + 0 = n1/2.

There is no finite constant C with n1/2 ≤ Cn1/4 for all n and hence T is not

bounded.

Suppose now (xn, yn) is in the graph of T for all n (different xn from above) and

(xn, yn)→ (x, y) in E × F (as n→∞). So yn = Txn = xn. Also xn → x in E
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and yn = xn → y in F . So ‖xn − x‖4 → 0 as n → ∞ and ‖xn − y‖2 → 0 as

n→∞.

Then x ∈ `4 and y ∈ `2. But also, the kth term of xn converges (in K) to the kth

term of x (for each k ∈ N) and to the kth term of y.

That is because if xn,k is the kth term of xn and x∞,k is the kth term of x, then

|xn,k − x∞,k| ≤ ‖xn − x‖4 and a similar fact holds for the norm ‖ · ‖2.

So x = y ∈ `4 ∩ `2. That means (x, y) = (x, x) is in the graph of T and thus the

graph is closed.
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