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Chapter 3: Weak topologies and Tychonoff’s theorem
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3.1 Tychonoff’s theorem
Theorem 3.1.1 (Tychonoff’s theorem). Let (Xα)α∈A be a nonempty family of nonempty topo-
logical spaces Xα (for α ∈ A = some index set).

Then X =
∏

α∈A is compact if and only if Xα is compact for each α ∈ A.

Proof. ⇒: (easy part) We denote by πβ : X → Xβ the coordinate projection onto the β-
coordinate (for β ∈ A). That is πβ((xα)α∈A) = xβ . Since the spaces Xα are nonempty, πβ
is surjective. Also, by the way the product topology is defined (MA3421:1.5.10), πβ is contin-
uous for each β. Thus Xβ = πβ(X) is compact (the continuous image of a compact space —
Proposition MA3421:1.3.10).
⇐: (This is the real content of the theorem. As the proof relies on using Zorn’s lemma in a

way that is quite tricky, we relegate it to an appendix.)

Example 3.1.2. Every generalised cube
∏

i∈I [ai, bi] (where I is an index set and ai, bi ∈ R,
ai ≤ bi∀i ∈ I) is compact.

Compactness follows from Tychonoff’s theorem.

3.2 Locally convex topological vector spaces
Remark 3.2.1. Recall that given a seminorm p : E → [0,∞) on a vector space E over K, we can
define an associated semi-metric dp : E × E → [0,∞) by dp(x, y) = p(x − y). We can then
define a topology on E by taking as a base for the topology the open balls

Bp(x, r) = {y ∈ E : p(x− y) < r}

for r > 0. We will denote this topology Tp and call it the topology defined by p.

Maybe we should recall what a seminorm is.

Definition 3.2.2. A seminorm on a vector space E over the field K is a function p : E →
[0,∞) ⊆ R which satisfies the following properties

1
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(i) (Triangle inequality) p(x+ y) ≤ p(x) + p(y) (all x, y ∈ E);

(ii) (scaling property) p(λx) = |λ|p(x) for all λ ∈ K, x ∈ E;

(iii) p(x) ≥ 0 for x ∈ E (which is already given by p : E → [0,∞)).

A vector space E over K together with a chosen norm ‖ · ‖ is called a normed space (over K)
and we write (E, ‖ · ‖).

Definition 3.2.3. If E is a vector space over K and x, y ∈ E, then a convex combination of x
and y means an element of E of the form (1− t)x+ ty where 0 ≤ t ≤ 1 (t ∈ R).

A subset S ⊆ E is called convex if S contains all convex combinations of pairs of points
x, y ∈ S.

Example 3.2.4. Balls Bp(x, r) with respect to a seminorm (or norm) p are convex.

Definition 3.2.5. A topological vector space is a vector space E over K together with a topology
T on E such that

(i) addition E×E → E ((x, y) 7→ x+ y) is continuous (using the product topology on E and
the given topology on E);

(ii) scalar multiplication K× E → E ((λ, x) 7→ λx) is continuous.

A topological vector space is called a locally convex topological vector space if it also satis-
fies:

(iii) there is a base for T consisting of convex (open) sets.

Proposition 3.2.6. Given a familyP of seminorms on a vector spaceE over K, there is a weakest
topology TP on E which contains all the topologies Tp for p ∈ P .

Moreover (E, TP) is a topological vector space and a base for the topology TP can be given
by the balls Bq(x, r) with x ∈ E, r > 0 and q a seminorm on E continuous with respect to TP .

A seminorm q onE is continuous with respect to TP if and only if there are n ≥ 1, p1, p2, . . . , pn ∈
P and positive scalars C1, C2, . . . , Cn satisfying

q(x) ≤
n∑
j=1

Cjpj(x) (x ∈ E).

Proof. By Theorem MA3421:1.5.3 there is a weakest topology TP containing the union
⋃
p∈P Tp.

Moreover, since each set in Tp is a union of balls Bp(x, r), the topology TP is the weakest on that
contains

{Bp(x, r) : x ∈ X, r > 0, p ∈ P}

Moreover, from the constructive proof of Theorem MA3421:1.5.3, there is a base for the topol-
ogy TP consisting of finite intersection of balls Bp(x, r).
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If q is a seminorm on E continuous with respect to TP , then Bq(0, 1) = {x ∈ E : q(x) < 1}
must be open with respect to TP (as the inverse image of an open set) and so there are finitely
many balls Bpj(xj, rj) such that

0 ∈
n⋂
j=1

Bpj(xj, rj) ⊆ Bq(0, 1)

Replacing rj by r′j = rj − p(xj) we have 0 ∈ Bpj(0, r
′
j) ⊆ Bpj(xj, rj) and so

0 ∈
n⋂
j=1

Bpj(0, r
′
j) ⊆ Bq(0, 1).

Now if Cj = 1/r′j , then
∑n

j=1Cjpj(x) < 1 implies pj(x) < 1/Cj = r′j for 1 ≤ j ≤ n, hence
x ∈ Bpj(0, r

′
j) (1 ≤ j ≤ n) so that q(x) < 1. It follows by scaling x that

q(x) ≤
n∑
j=1

Cjpj(x) (1)

holds for all x ∈ E.
Thus we have shown that each continuous seminorm satisfies the inequality (for some n, pj

and Cj). Conversely, suppose q is a seminorm on E that satisfies (1). The argument just given
shows that

0 ∈
n⋂
j=1

Bpj(0, r/Cj) ⊆ Bq(0, r)

(so that the origin is in the TP interior of Bq(0, r)) and by translation we get that,for any x ∈ E

x ∈ x+
n⋂
j=1

Bpj(0, r/Cj) =
n⋂
j=1

Bpj(x, r/Cj) ⊆ x+Bq(0, r) = Bq(x, r)

(so that the centre is in the TP interior of Bq(x, r)). It follows quite easily that Tq open sets
are open in TP . In particular balls Bq(x, r) (with respect to continuous seminorms q, or more
generally seminorms q that satisfy (1)) are open for (E, TP).

We did also claim that seminorms q satisfying (1) must be continuous. But we have just
shown that, for such q, Tq ⊆ TP . Then since q is Tq-continuous (exercise), q must be TP-
continuous.

To show that the balls Bq(x, r) form a base for the topology TP suppose x ∈ U with U ∈ TP .
Then there are n, p1, p2, . . . , pn ∈ P and positive r1, r2, . . . , rn so that x ∈

⋂n
j=1Bpj(xj, rj) ⊆ U

(because finite intersection of balls Bp(x, r) form a base). Let r′j = rj − pj(x− xj) and then we
have

x ∈
n⋂
j=1

Bpj(x, r
′
j) ⊆ U.
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Let q =
∑n

j=1(1/r
′
j)pj , which is then a continuous seminorm on (E, TP) (as it satisfies (1)).

Then q(y − x) < 1 implies pj(y − x) < r′j for 1 ≤ j ≤ n, and so

x ∈ Bq(x, 1) ⊆
n⋂
j=1

Bpj(x, r
′
j) ⊆ U.

It remains to show that addition and multiplication are continuous. Let U ⊆ E be open in
TP . To show that the inverse image of U under addition is open, pick (x0, y0) ∈ E × E with
x0 + y0 ∈ U . We know there is a continuous seminorm q with x0 + y0 ∈ Bq(x0 + y0, 1) ⊆ U .

The argument now is really that addition is continuous in Tq. In detail, if (x, y) ∈ Bq(x0, 1/2)×
Bq(y0, 1/2) then

q((x+y)−(x0+y0)) = q((x−x0)+(y−y0)) ≤ q(x−x0)+q(y−y0) < 1⇒ x+y ∈ Bq(x0+y0, 1).

Thus the open set Bq(x0, 1/2)×Bq(y0, 1/2) (in the product topology onE ×E) is in the inverse
image of U .

If (λ0, x0) ∈ K × R has λ0x0 ∈ U , again pick q with Bq(λ0x0, 1) ⊆ U and the argument is
that scalar multiplication is continuous in Tq.

If |λ− λ0| < min(1/(2(q(x0) + 1)), |λ0|+ 1) and q(x− x0) < 1/(4|λ0|+ 2) then

q(λx− λ0x0) ≤ q(λx− λx0) + q(λx0 − λ0x0)
= |λ|q(x− x0) + |λ− λ0|q(x0)

≤ (|λ0|+ |λ− λ0|)
1

4(|λ0|+ 2)
+

q(x0)

2(q(x0) + 1)

≤ 2|λ0|+ 1

4|λ0|+ 2
+

1

2
< 1

Since the balls Bq(x, r) are convex (and form a base), we have verified that (E, TP) is a
locally convex topological vector space.

Example 3.2.7. Let G ⊆ C be an open set and let H(G) denote the space of all holomorphic
functions f : G→ C (also called analytic functions). For K ⊂ G compact introduce a seminorm
‖ · ‖K on H(G) by ‖f‖K = supz∈K |f(z)|.

Then the topology onH(G) generated by the seminorms ‖·‖K is a locally convex topological
vector space topology. It is the usual topology used on H(G), often called the compact open
topology.
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Proposition 3.2.8. Let E be a vector space over K, P a family of seminorms on E and TP the
topology defined by P . If f : X → E is a function from a topological space X into E, then f is
continuous for TP if and only if it is continuous for Tp for each p ∈ P .

Proof. ⇒: The identity map (E, TP) → (E, Tp) is continuous for each p ∈ P . So if f is
continuous from X into (E, TP), then it is continuous from X into (E, Tp) (for each p ∈ P).
⇐: Suppose f is continuous from X into (E, Tp) (for each p ∈ P) and consider a basic open

set for TP of the form

B =
n⋂
j=1

Bpj(xj, rj)

where pj ∈ P and rj > 0 (each j). Then the open ballBpj(xj, rj) is in Tpj and so f−1(Bpj(xj, rj))
must be open in X . Then so is

f−1(B) =
n⋂
j=1

f−1(Bpj(xj, rj))

Remark 3.2.9. Using Proposition 3.2.8 (which you can see is not so difficult to show) we can give
a simpler proof of the part of Proposition 3.2.6 that states that TP is a locally convex topological
vector space topology.

The locally convex part is OK since a base for the topology TP consists of (convex) finite
intersections

B =
n⋂
j=1

Bpj(xj, rj)

where pj ∈ P and rj > 0 (each j).
By Proposition 3.2.8, to show that addition : E ×E → E is continuous from the product TP

topology to the TP topology, we just need to show it is continuous into Tp for each p ∈ P .
But that follows from just the last part of the proof of Proposition 3.2.6 (the product Tp

topology on E × E is weaker than the product TP topology).
Similarly one can show that multiplication by scalars is continuous.

3.3 Weak and weak*-topologies
Definition 3.3.1. If E is normed space then the weak topology on E is the topology generated
by the seminorms

pα(x) = |α(x)| (α ∈ E∗).

Definition 3.3.2. If E is normed space then the weak* topology on the dual E∗ is the topology
generated by the seminorms

px(α) = |α(x)| (x ∈ E).
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Proposition 3.3.3. The weak topology on a normed space E is weaker than the norm topology,
and strictly weaker unless E is finite dimensional.

The weak*-topology on E∗ is weaker than the norm topology, and strictly weaker unless E
is finite dimensional.

Proof. The identity linear map from (E, ‖ ·‖) to E with any one of the seminorms pα(·) = |α(·)|
is continuous because it satisfies pα(x) ≤ ‖α‖‖x‖. It follows that each topology Tpα is weaker
than the norm topology and so therefore is the weak topology weaker than the norm topology.

If the weak topology was the same as the norm topology, then q(x) = ‖x‖ would be a
continuous (semi)norm on E for the weak topology, and so Proposition 3.2.6 assure us that there
must be α1, α2, . . . , αn ∈ E∗ and constants Cj > 0 so that

q(x) = ‖x‖ ≤
n∑
j=1

Cjpαj(x) =
n∑
j=1

Cj|αj(x)|

holds for all x ∈ E. It follows that if x ∈
⋂n
j=1 kerαj , then ‖x‖ = 0⇒ x = 0.

However
⋂n
j=1 kerαj has codimension at most n inE. Thus ifE is infinite dimensional, then

we have to have
⋂n
j=1 kerαj 6= {0} and we have a contradiction.

If you are not happy with the codimension idea, here is a rather elementary argument.
If E is infinite dimensional, then there must be n+ 1 linearly independent elements
x1, x2, . . . , xn+1 ∈ E. The condition for an element x =

∑n+1
k=1 tkxk (in their span)

to be in
⋂n
j=1 kerαj is

n+1∑
k=1

tkαj(xk) = 0 (1 ≤ j ≤ n).

That is n homogeneous linear equations in n+1 unknowns t1, t2, . . . , tn+1 and there
is bound to be a nonzero solution.

The proof for the weak*-topology is really almost identical. In a way the roles of x and α
have to be exchanged and that is more or less it.

We do need to know that if E is infinite dimensional, then so is E∗. One way to see that is
to notice that if dimE∗ < ∞, then its dual (E∗)∗ = E∗∗ would have the same finite dimension.
Since there is a canonical (linear isometric) embedding J : E → E∗∗, we’d have to have dimE <
∞ also.

Notation 3.3.4. For a normed space E, we use BE for the open unit ball of E, BE = {x ∈ E :
‖x‖ < 1}, and B̄E = {x ∈ E : ‖x‖ ≤ 1} for the closed unit ball.

Theorem 3.3.5 (Banach-Alaoglu). Let E be a normed space. Then the closed unit ball B̄E∗ is
compact in the weak*-topology.
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Proof. For each x ∈ E, let Dx = {λ ∈ K : |λ| ≤ ‖x‖} and define a map τ : B̄E∗ →
∏

x∈E Dx

by
τ(α) = (α(x))x∈E

We claim that τ is a homeomorphism from (B̄E∗ , Tw∗) onto its range and that the range is
compact. To show compactness of the range, we show it is closed in the product space

∏
x∈E Dx

(which is compact by Tychonoff’s theorem).
The first point is that τ is properly defined (has values in the product

∏
x∈E Dx because

|α(x)| ≤ ‖α‖‖x‖ ≤ ‖x‖ (since ‖α‖ ≤ 1)).
The range of τ should be considered to be equipped with the subspace topology of the product

space. If we write X =
∏

x∈E Dx and Y = τ(B̄E∗), then that means that the open sets for the
topology on Y are the intersections U ∩ Y with Y of open sets U ⊆ X , and then we can say
that these are unions of sets of the form B ∩ Y with B a basic open set of X . Similarly a basic
open set for (B̄E∗ , Tw∗) (weak*-topology) would be the intersection of a basic open set of the
weak*-topology of E∗ with the ball B̄E∗ , hence of the form

B̄E∗ ∩
n⋂
j=1

{α ∈ E∗ : pxj(α− αj) < rj} = B̄E∗ ∩
n⋂
j=1

{α ∈ E∗ : |α(xj)− αj(xj)| < rj}

(where n ≥ 0, xj ∈ E and αj ∈ E∗ for 1 ≤ j ≤ n).
To show that τ is continuous with values in the product space, it is enough to show that each

coordinate function α 7→ α(x) is continuous (that is for each x ∈ E). So fix one x ∈ E and call
this map τx (so τx(α) = α(x)). If x = 0, then we are looking at the constant map α 7→ 0 (which
is continuous). If x 6= 0 consider the inverse image under τx of a disk {λ ∈ K : |λ − λ0| < r}
(or actually an interval if K = R), where λ0 ∈ K and r > 0. By Hahn-Banach there is α0 ∈ E∗
with α0(x) = λ0 and then the pullback under τx of the disk is

τ−1x ({λ ∈ K : |λ− λ0| < r}) = B̄E∗ ∩ {α ∈ E∗ : |α(x)− α0(x)| < r}

That’s a basic open set in (B̄E∗ , Tw∗), hence open. So τx must be continuous (for all x ∈ E). So
τ is continuous (by Theorem MA3421:1.5.13 (i)).

It is rather clear that τ is injective because τ(α) = τ(β) tells us that α(x) = β(x) for each
x ∈ E, which is just that α = β.

We can also see that τ is a homeomorphism onto its range in a way that is rather direct. Basic
open sets in a product are described in Remarks MA3421:1.5.12. If πy :

∏
x∈E Dx → Dy is the

projection onto the y coordinate, then we get basic open sets by taking finite intersections of sets
π−1y (U) with U ⊂ Dy open. But those U are unions of intersections of disks B(λ0, r) with Dy.
So we can just consider finite intersections of sets

π−1y (B(λ0, r) ∩Dy).

Then we take the intersections of these with the range of τ to get a subbase (or base if we take
all finite intersections of these sets) for the topology on the range of τ inside the product.

Now
τ−1

(
π−1y (B(λ0, r) ∩Dy)

)
= τ−1y (B(λ0, r) ∩Dy)
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and we’ve just seen that we can write this set as

B̄E∗ ∩ {α ∈ E∗ : |α(y)− α0(y)| < r} (2)

(for some α0 ∈ E∗) as long as y 6= 0. The case y = 0 is not really a problem because D0 = {0}
and so we either have the whole space or the empty set, and so we can restrict our attention to
y 6= 0. Basic open sets in the weak*-topology of B̄E∗ can be taken to be finite intersections
of exactly the sets (2). Since τ is a bijection onto its range that maps subbasic open sets (2) to
subbasic open sets

π−1y (B(λ0, r) ∩Dy) ∩ τ(B̄E∗),

it must be a homeomorphism.
It remains to show that the range of τ is closed in the product

∏
x∈E Dx (which we know is

compact by Tychonoff’s theorem — Theorem 3.1.1).
We can view elements of

∏
x∈E Dx as functions α : E →

⋃
x∈E Dx = K. The range of τ

consists of those functions which are linear (α(λx + y) = λα(x) + α(y) for each x, y ∈ E
and λ ∈ K) and also bounded by 1 (|α(x)| ≤ ‖x‖ for each x ∈ E). To show that the linearity
restriction gives a closed subset of

∏
x∈E Dx, consider for a moment fixed y, z ∈ E and λ ∈ K

and the map

:
∏
x∈E

Dx → K3

α = (α(x))x∈E 7→ (α(y), α(z), α(λy + z)).

That is a continuous map (each coordinate is continuous). The restriction α(λy + z) = λα(y) +
α(z) on α defines a closed subset of

∏
x∈E Dx because it is the inverse image of the closed set

{(t1, t2, t3) ∈ K3 : λt1 + t2 − t3 = 0}.{
α ∈

∏
x∈E Dx : α linear

}
is then the intersection over all y, z ∈ E and λ ∈ K of these closed

sets, and so it is a closed subset of
∏

x∈E Dx. Boundedness is automatic for linear α (because
α(x) ∈ Dx ⇒ |α(x)| ≤ ‖x‖).

Thus the image of τ is closed and so compact.

Theorem 3.3.6 (Goldstine). Let E be a normed space and J : E → E∗∗ the canonical isometric
embedding.

Then the weak*-closure of J(BE) (in the weak*-topology of E∗∗ = (E∗)∗) is B̄E∗∗ .

Proof. Skipped for lack of time.

Corollary 3.3.7. Let E be a normed space. Then E is reflexive if and only if B̄E is compact in
the the weak topology.

Proof. If E is reflexive, the weak topology on E coincides with the weak*-topology on E∗∗.
More precisely, the canonical embedding J : E → E∗∗ (which is bijective in the case when

E is reflexive) is a homeomorphism from the weak topology of E to the weak*-topology of
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E∗∗ = (E∗)∗. That is because the weak-topology on E is given by the seminorms pα : E →
[0,∞) with pα(x) = |α(x)| with α ∈ E∗ and the weak*-topology on (E∗)∗ is also given by
seminorms given by α ∈ E∗. To make the notation clear we might denote the seminorms on
E∗∗ by p̃α and write p̃α(z) = |z(α)| for z ∈ E∗∗. Now for x ∈ E (and z = J(x) ∈ E∗∗)
we have p̃α(J(x)) = |J(x)(α)| = |α(x)| = pα(x), from which it can be deduced that J is a
homeomorphism from the weak topology of E to the weak*-topology of E∗∗.

So if E is reflexive then because J(B̄E) = B̄E∗∗ is weak*-compact and J is a homeomor-
phism, it follows that B̄E is weakly compact.

On the other hand if B̄E is weakly compact, then so is J(B̄E) weak*-compact and so closed
in the weak*-topology of E∗∗. Hence by Goldstine’s theorem J(B̄E) = B̄E∗∗ and it follows then
by scaling that J(E) = E∗∗.

Proposition 3.3.8. Let E be a normed space and F a vector subspace. Then the weak topology
of F is the same as the relative weak topology (of F as a subset of E with the weak topology).

Proof. The weak topology of F is given by the seminorms pβ for β ∈ F ∗ with pβ(y) = |β(y)|
(y ∈ F ).

The weak topology of E is given by the seminorms pα for α ∈ E∗ with pα(x) = |α(x)|
(x ∈ E).

It can be checked that the relative weak topology of F as a subset ofE with the weak topology
is the topology on F given by the seminorms pα|F , the restrictions to F of the pα with α ∈ E∗.
Notice that pα|F = pα|F But via the Hahn-Banach theorem every β ∈ F ∗ is of the form β = α|F
for some α ∈ E∗ and it is a simple fact that α ∈ E∗ ⇒ αF ∈ F ∗. So the seminorms pα|F
(α ∈ E∗) are exactly the same as the seminorms pβ (β ∈ F ∗).

Hence the result.

Proposition 3.3.9. Let E be a reflexive Banach space and F a closed subspace. Then F is
reflexive.

Proof. Skipped.
(The idea is not hard. Show that F is closed in the weak topology for E, from which it

follows that B̄F = F ∩ B̄E is closed in B̄E (for the relative weak topology).
Compactness of B̄E in the weak topology (of E) then implies compactness of B̄F in the

relative weak topology on F , which is the same as the weak topology of F (by Proposition 3.3.8).
Corollary 3.3.7 now implies that F is reflexive.)
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A Proof of Tychonoff’s theorem
Theorem A.0.1 (Tychonoff’s theorem 3.1.1). Let (Xα)α∈A be a nonempty family of nonempty
topological spaces Xα (for α ∈ A = some index set).

Proof. We proved the easy part⇒ and new er proxe⇐.
The proof presented here is quite tricky, but has the merit that it does not require a whole

lot of further background used in some other proofs. This proof is from a book by L. Nachbin,
‘The Haar Integral’, Van Nostrand, 1965 (pages 102–103). The book is in the Hamilton Library
515.43 K5. The proof uses Zorn’s lemma.)

To make the proof easier to write, we use some special notation.

• For Vα ⊆ Xα a subset, we will use V −1α to denote (πα)−1(Vα).

• We will use U to denote open covers of X .

• We will use V for open subsets of X and Vα for open subsets of Xα.

Suppose X is not compact. Then there is at least one open cover U of X with no finite
subcover. Let U denote the collection of all such open covers U of X with no finite subcover.

We now use Zorn’s lemma to show that there is a maximal member in U (maximal with
respect to ⊆; one cover U can be contained in another U ′ when U ′ has all the same open sets as
U together with some more).

Here are the details of applying Zorn’s lemma to U . We need to establish that each chain C in
U has an upper bound in U . Notice first that U 6= ∅ by our assumption that there is one U ∈ U .

If C is not empty we consider U ′ =
⋃
C =

⋃
U∈C U . Then U ′ is a collection of open subsets

of X and U ′ covers X because if we take any U ∈ C, then X =
⋃
U =

⋃
V ∈U V ⊆

⋃
U ′.

We claim that U ′ ∈ U — in other words that U ′ has no finite subcover. To see this, suppose
{V1, V2, . . . , Vn} ⊂ U ′ is a finite subcover. Then for each 1 ≤ i ≤ n, there is U (i) ∈ C so that
Vi ∈ U (i). We can then use the fact that C is linearly ordered to replace U (1), U (2), . . . , U (n) by
the largest one of them. (For example, we must have either U (1) ⊆ U (2) or U (2) ⊆ U (1) and
we can replace both by whichever is larger, to get V1, V2 contained in a common U (2′) ∈ C.) If
we denote the largest by U (n′) we have a finite subcover {V1, V2, . . . , Vn} ⊂ U (n′) ∈ C ⊆ U —
contradicting the definition of U (n′) ∈ U . Hence U ′ ∈ U . Also U ′ is clearly an upper bound for
C (U ⊆ U ′∀U ∈ C).

By Zorn’s lemma then, there is a maximal U ∈ U — an open cover of X with no finite
subcover, but as soon as we add one more open set V to U , the resulting U ∪ {V } will have a
finite subcover (that is, if V /∈ U ).

Now fix α ∈ A for a moment and consider the collection of all open sets Vα ⊆ Xα such that
V −1α ∈ U . We claim that this collection cannot cover Xα. If it did cover Xα, it would be an open
cover of the compact Xα. So it would have a finite subcover Xα = V 1

α ∪ V 2
α ∪ · · · ∪ V n

α . But
then X = (V 1

α )−1 ∪ (V 2
α )−1 ∪ · · · ∪ (V n

α )−1, where each (V i
α)−1 ∈ U . So U would have a finite

subcover, which it does not.
As the open Vα ⊆ Xα such that V −1α ∈ U do not cover Xα, we can select a point

xα ∈ Xα \
⋃
{Vα : Vα ⊆ Xα open, V −1α ∈ U}
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Do this for each α ∈ A and then we have a point x = (xα)α∈A ∈ X .
As U is a cover of X , there must be V ∈ U with x ∈ V . Using the standard way to find

a basis for the product topology on X =
∏

α∈AXα, we know there are finitely many (distinct)
α1, α2, . . . , αn ∈ A, open sets Vαi ⊆ Xαi (1 ≤ i ≤ n) so that

x ∈
n⋂
i=1

V −1αi
⊂ V.

For each i, xαi ∈ Vαi and by the choice of xαi we have V −1αi
/∈ U . By maximality of U ∈ U ,

we know U ∪ {V −1αi
} has a finite subcover. That is there exist

V i,j ∈ U (1 ≤ j ≤ ni)

so that

X = V −1αi
∪

ni⋃
j=1

V i,j.

It follows that
n⋃
i=1

ni⋃
j=1

V i,j ⊇ X \
n⋂
i=1

V −1αi
⊇ X \ V.

Thus V together with the sets V i,j (1 ≤ i ≤ n, 1 ≤ j ≤ ni) form a finite cover of X , and all
these sets are in U . Hence U has a finite subcover — a contradiction.

Thus X must be compact.

March 22: Remove some extra )’s and a typo in the proof of Theorem 3.3.5.
Richard M. Timoney (March 22, 2017)
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