MA3421 (Functional Analysis 1) Tutorial sheet 8
[December 1, 2016]

Name: Solutions

1. For measurable functions f,g: X — K on a measure space (X, >, i), let [f] denote the
p-a.e. equivalance class of f, by which we mean

[f]={h:h: X — Kis X-measurable and pu({x € X : f(x) # h(x)}) =0}

(and [g] the equivalence class of g).

Show that it make sense to define addition, multiplication by scalars A € K and multipli-
cation of equivalence classes by these rules:

1+ gl =1f+gl, Alfl = [Mf]and [flg] = [f9]-

[Hint: You should take it as known that f 4 g, Af and fg are measurable as long as f and
g are. Also the union of two sets of measure zero will have measure 0.]

Solution: Suppose [f] = [fi] and [g] = [g1], where all of f, f, g and g; are measurable
functions on X. So Ey = {z € X : f(z) # fi(z)} has u(Ey) =0and E, = {x € X :
9(x) # g1(x)} has p(E,) = 0.

(The idea of the notation is that F is for exceptional, and the exceptions are small in the
sense of measure zero.)

By subadditiviy of p (or just the hint),
u(Er U Eg) < u(Ey) + p(Ey) =0

and so u(Ey U E,) = 0.

Since
Brig={z € X : f(x) + g(2) # fi(x) + 91(2)} € Ey UE,

we have u(Eyy,) =0or f + g = fi + g1 p-a.e. That means [f + g] = [f1 + ¢1] and so it
is not ambiguous to define [f] + [g] = [f + ¢]-

For fg we have basically the same argument because
Erg={z € X : f(z)g(z) # filz)g1(2)} € E; U E.

So ju(Efg) = 0 and [fg] = [f101]-
For \[f] (with A € K) it is even easier since then

Exp={z € X : A\f(x) # AMi(2)} = Ey

when A\ # 0 (and Ey; = @ when A = 0). So [Af] = [Mfi]-



2. Forafixed g € L'(X,%, 1) (1 <t < 00) (where again (X, X, 1) is a measure space, and
really it is [g] that is in L!(X, ¥, ) show that for 1 < r, s < oo it is possible to define a
bounded linear operator

M,: L'(X,S, 1) = L*(X, S, p)

provided p =r/s > 1 and sq =t (where 1 < ¢ < coisrelatedtopby 1/p+ 1/q = 1) by
using the rule

M,([f]) = lgf].

[Hint: Use Holder’s inequality. (Aside M, is called a multiplication operator.)]
Solution: The aim is to show first that g f € L*(X, ¥, uu), which means to show

/ lgf|° dp < o0
X

(whenever f € L"(X,3, ) and g is as specified).

Using Holder, we can say
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As || f|l- < coand ||g||: < oo we are sure that gf € L*(X, 3, ) always. But we can also
rewrite the inequality we got as [|g.f[| < [[f[[7]lg[l? and so we get [lgf[|s < |[f]l-llgll: (by
taking the 1/s power).

We can verify that M is linear because
My(f + Ah) = g(f + Ah) = fg+ Agh = My(f) + AMy(h)
(for f,h € L"(X, %, 1), A € K).

[To be more precise we should use [f] rather than f, and the same for [¢f] etc, but the
point of Q1 is that we don’t really need to worry. Also, why is g(f + Ah) = fg + Agh?
The answer is that the left side is the function with value at x € X which is g(z)(f(z) +
Ah(z)). Since the values g(x), f(x) and h(x) are just numbers, this is certainly equal to
g(x) f(x) + Ag(z)h(x), which is the value at x of fg + Agh.]

If we rewrite the last form of the inequality as
1M (H)lls < Ngllell f1I-
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|(|n7|w that M/, is linear) it says that )/, is a bounded operator with operator norm || M, ||, <
gllt-

3. With the same notation and assumptions as the previous question, assume also that (X ) <
0o. Then show that if 1 < u < s, we can define

M,: L"(X, %, pn) = L*(X, %, p)

by the same rule and again get a bounded linear operator. [Hint: there is a result in the
notes that helps a lot.]

Solution: If u(X) < oo, then we have L*(X, %, u) C L*(X, X, 1) with a bounded (or
continuous) inclusion map. (See Examples 2.6.6 (iii).) Combining that fact with Q2, we
can get this result immediately. We have a composition of continuous linear maps

inclusion ma
L(X, 5, 0) 2% 13X, %, ) S oy )

(which then will be continuous and linear — hence a bounded linear operator). The end
result is a map that sends f € L°(X, X, u) to gf € L*(X, %, ).

[So we use the same notation M, for it.]

Richard M. Timoney



