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Name: Solutions

1. For measurable functions f, g : X → K on a measure space (X,Σ, µ), let [f ] denote the
µ-a.e. equivalance class of f , by which we mean

[f ] = {h : h : X → K is Σ-measurable and µ({x ∈ X : f(x) 6= h(x)}) = 0}

(and [g] the equivalence class of g).

Show that it make sense to define addition, multiplication by scalars λ ∈ K and multipli-
cation of equivalence classes by these rules:

[f ] + [g] = [f + g], λ[f ] = [λf ] and [f ][g] = [fg].

[Hint: You should take it as known that f + g, λf and fg are measurable as long as f and
g are. Also the union of two sets of measure zero will have measure 0.]

Solution: Suppose [f ] = [f1] and [g] = [g1], where all of f, f1, g and g1 are measurable
functions on X . So Ef = {x ∈ X : f(x) 6= f1(x)} has µ(Ef ) = 0 and Eg = {x ∈ X :
g(x) 6= g1(x)} has µ(Eg) = 0.

(The idea of the notation is that E is for exceptional, and the exceptions are small in the
sense of measure zero.)

By subadditiviy of µ (or just the hint),

µ(Ef ∪ Eg) ≤ µ(Ef ) + µ(Eg) = 0

and so µ(Ef ∪ Eg) = 0.

Since
Ef+g = {x ∈ X : f(x) + g(x) 6= f1(x) + g1(x)} ⊆ Ef ∪ Eg

we have µ(Ef+g) = 0 or f + g = f1 + g1 µ-a.e. That means [f + g] = [f1 + g1] and so it
is not ambiguous to define [f ] + [g] = [f + g].

For fg we have basically the same argument because

Efg = {x ∈ X : f(x)g(x) 6= f1(x)g1(x)} ⊆ Ef ∪ Eg.

So µ(Efg) = 0 and [fg] = [f1g1].

For λ[f ] (with λ ∈ K) it is even easier since then

Eλf = {x ∈ X : λf(x) 6= λf1(x)} = Ef

when λ 6= 0 (and Eλf = ∅ when λ = 0). So [λf ] = [λf1].



2. For a fixed g ∈ Lt(X,Σ, µ) (1 < t ≤ ∞) (where again (X,Σ, µ) is a measure space, and
really it is [g] that is in Lt(X,Σ, µ)) show that for 1 ≤ r, s < ∞ it is possible to define a
bounded linear operator

Mg : Lr(X,Σ, µ)→ Ls(X,Σ, µ)

provided p = r/s ≥ 1 and sq = t (where 1 < q ≤ ∞ is related to p by 1/p+ 1/q = 1) by
using the rule

Mg([f ]) = [gf ].

[Hint: Use Hölder’s inequality. (Aside Mg is called a multiplication operator.)]

Solution: The aim is to show first that gf ∈ Ls(X,Σ, µ), which means to show∫
X

|gf |s dµ <∞

(whenever f ∈ Lr(X,Σ, µ) and g is as specified).

Using Hölder, we can say∫
X

|gf |s dµ =

∫
X

|f |s|g|s dµ

≤ ‖|f |s‖p‖|g|s‖q

=

(∫
X

|f |sp dµ
)1/p(∫

X

|g|sq dµ
)1/q

=

(∫
X

|f |r dµ
)1/p(∫

X

|g|t dµ
)1/q

= ‖f‖r/pr ‖g‖
t/q
t = ‖f‖sr‖g‖st

As ‖f‖r < ∞ and ‖g‖t < ∞ we are sure that gf ∈ Ls(X,Σ, µ) always. But we can also
rewrite the inequality we got as ‖gf‖ss ≤ ‖f‖sr‖g‖st and so we get ‖gf‖s ≤ ‖f‖r‖g‖t (by
taking the 1/s power).

We can verify that Mg is linear because

Mg(f + λh) = g(f + λh) = fg + λgh = Mg(f) + λMg(h)

(for f, h ∈ Lr(X,Σ, µ), λ ∈ K).

[To be more precise we should use [f ] rather than f , and the same for [gf ] etc, but the
point of Q1 is that we don’t really need to worry. Also, why is g(f + λh) = fg + λgh?
The answer is that the left side is the function with value at x ∈ X which is g(x)(f(x) +
λh(x)). Since the values g(x), f(x) and h(x) are just numbers, this is certainly equal to
g(x)f(x) + λg(x)h(x), which is the value at x of fg + λgh.]

If we rewrite the last form of the inequality as

‖Mg(f)‖s ≤ ‖g‖t‖f‖r
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(now thatMg is linear) it says thatMg is a bounded operator with operator norm ‖Mg‖op ≤
‖g‖t.

3. With the same notation and assumptions as the previous question, assume also that µ(X) <
∞. Then show that if 1 ≤ u ≤ s, we can define

Mg : Lr(X,Σ, µ)→ Lu(X,Σ, µ)

by the same rule and again get a bounded linear operator. [Hint: there is a result in the
notes that helps a lot.]

Solution: If µ(X) < ∞, then we have Ls(X,Σ, µ) ⊆ Lu(X,Σ, µ) with a bounded (or
continuous) inclusion map. (See Examples 2.6.6 (iii).) Combining that fact with Q2, we
can get this result immediately. We have a composition of continuous linear maps

Lr(X,Σ, µ)
Mg→ Ls(X,Σ, µ)

inclusion map
↪→ Lu(X,Σ, µ)

(which then will be continuous and linear — hence a bounded linear operator). The end
result is a map that sends f ∈ Ls(X,Σ, µ) to gf ∈ Lu(X,Σ, µ).

[So we use the same notation Mg for it.]

Richard M. Timoney
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