MA3421 (Functional Analysis 1) Tutorial sheet 6 [November 17, 2016]

Name: Solutions

Let c = {(x_n)_{n=1}[∞] ∈ l[∞] : lim_{n→∞} x_n exists} (the convergent sequences of scalars). Let X = {1/n : n ∈ N} ∪ {0}. (We consider X ⊆ ℝ with its usual topology, which makes it compact.) Show that it is possible to define a linear surjective isometry T : c → C(X) by setting T((x_n)_{n=1}[∞]) = f where

$$f(1/n) = x_n$$

and $f(0) = \lim_{n \to \infty} x_n$.

Solution: To show that T is well-defined, we need to know that $f: X \to \mathbb{K}$ is continuous (no matter which $(x_n)_{n=1}^{\infty} \in c$ is considered). But the points 1/n are isolated in X and every $f: X \to \mathbb{K}$ is continuous at each 1/n. The only issue is continuity at 0, which requites $\lim_{n\to\infty} f(1/n) = f(0)$ (or that for $\varepsilon > 0$ given we have $|f(1/n) - f(0)| < \varepsilon$ for all n large). Since we have $f(0) = \lim_{n\to\infty} x_n = \lim_{n\to\infty} f(1/n)$, this is true.

Next T is linear because, if $x=(x_n)_{n=1}^\infty\in c$ and $y=(y_n)_{n=1}^\infty\in c$

$$T(x+y) = T\left((x_n)_{n=1}^{\infty} + (y_n)_{n=1}^{\infty}\right) = T\left((x_n + y_n)_{n=1}^{\infty}\right)$$

has

$$T(x+y)\left(\frac{1}{n}\right) = x_n + y_n = T(x)\left(\frac{1}{n}\right) + T(y)\left(\frac{1}{n}\right)$$

Also,

$$T(x+y)(0) = \lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n = T(x)(0) + T(y)(0).$$

So T(x + y) is the same function as T(x) + T(y). For $\lambda \in \mathbb{K}$ (and still $x = (x_n)_{n=1}^{\infty} \in c$) we have

$$T(\lambda x) = T\left((\lambda x_n)_{n=1}^{\infty}\right)$$

so that

$$T(\lambda x)\left(\frac{1}{n}\right) = \lambda x_n = \lambda T(x)\left(\frac{1}{n}\right)$$

Taking limits, we get

$$T(\lambda x)(0) = \lim_{n \to \infty} \lambda x_n = \lambda \lim_{n \to \infty} x_n = \lambda T(x)(0).$$

To $T(\lambda x)$ is the same function on X as $\lambda T(x)$. That is $T(\lambda x)^{i} = \lambda T(x)$.

Starung with $f \in C(X)$ we can get a convergent sequence $x = (x_n)_{n=1}^{\infty}$ with T(x) = f by taking $x_n = f(1/n)$. So $T : c \to C(X)$ is surjective.

Finally we show that ||T(x)|| = ||x|| for each $x \in c$.

The norm ||x|| we use on c is the the one we get by restricting the norm from ℓ^{∞} , that is

$$||x||_{\infty} = \sup_{n} |x_n|.$$

The norm of $f = T(x) \in C(X)$ is also a supremum

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

Since $f(0) = \lim_{n \to \infty} f(1/n)$ holds for $f \in C(X)$, we have

$$||f||_{\infty} = \sup_{x \in X} |f(x)| = \sup_{0 \neq x \in X} |f(x)| = \sup_{n \in \mathbb{N}} |f(1/n)| = \sup_{n} |x_n|$$

when $f = T(x) - T((x_n)_{n=1}^{\infty})$. So T is an isometry.

Richard M. Timoney