MA3421 (Functional Analysis 1) Tutorial sheet 5
[October 27, 2016]

Name: Solutions

1. Let x,, € ¢* denote the sequence
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where the nth term is 1/ and all other terms are 0. More formally x,, = (2, ;)32 where
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Write out the partial sums sy = x1 + x5 and s3 = x1 + x5 + 3 of the series Zzozl x,, in (2.

Solution:

S3 = X1+ 22+ 23
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Then write out the general partial sum s, = > ;_, xj.

Solution:

sn = (1,
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2. Show that the series >, z,, (from the previous question) converges in ¢ and find it’s
sum explicitly. However, show that the series does not converge absolutely.

Solution: Consider s = (1, %, %, )= (%)20:1 (as the likely sum).

First s € ¢ because
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Next we can see that lim,,_,~, S,, = s in the £?-norm because
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as n — oo (because Zzo:l% < oo and the expression inside the square root is the
difference >~ , %2 =>7 J% between the infinite sum and the n'" partial sum.)
Finally, absolute convergence would mean >~ | ||z, |2 < co and in this case
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so that
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(harmonic series diverges). So it is not absolutely convergent.
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