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[October 20, 2016]

Name: Solutions

1. Let (X, d) be a metric space. Define ρ : X ×X → [0,∞) by

ρ(x, y) = min(d(x, y), 1)

Show that ρ is also a metric on X and that the metric topology for d is the same as the
metric topology for ρ.

Solution: We need to check that ρ satisfies the conditions to be a metric (and we know that
d does).

(i) ρ(x, y) ≥ 0 (all x, y ∈ X) and ρ(x, y) = 0⇒ x = y.
Since d(x, y) ≥ 0, we have ρ(x, y) ≥ 0. If ρ(x, y) = 0, then d(x, y) = 0 and so
x = y.

(ii) ρ(y, x) = ρ(x, y) (for all x, y ∈ X)
True since d(y, x) = d(x, y).

(iii) Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X .
Consider two cases: First case d(x, y) < 1 and d(y, z) < 1. Then

ρ(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z) = ρ(x, y) + ρ(y, z).

Second case is where one or both of d(x, y), d(y, z) is at least 1. Then one or both of
ρ(x, y), ρ(y, z) is 1 and so

ρ(x, y) + ρ(y, z) ≥ 1 ≥ ρ(x, z).

For the topology part, if r < 1 then

Bd(x, r) = {y ∈ X : d(x, y) < r} = Bρ(x, r) = {y ∈ X : ρ(x, y) < r}

If U ⊂ X is open for the d-topology then for each x ∈ U there is some r > 0 with
Bd(x, r) ⊂ U . But we decrease r and make r < 1 and this is still true. Then Bρ(x, r) =
Bd(x, r) ⊂ U . That shows U is open in the ρ-topology.

The reverse, showing that open sets in the ρ-topology are open in the d-topology, is just
the same.



2. Let (Xn, dn) be metric spaces (for n = 1, 2, . . .) and let X =
∏∞

n=1Xn be the (infi-
nite) cartesian product set. Let ρn : Xn × Xn → [0,∞) be defined by ρn(xn, yn) =
min(dn(xn, yn), 1) for xn, yn ∈ Xn.

Show that it is possible to define a metric ρ on the set X by

ρ ((xn)
∞
n=1, (yn)

∞
n=1) =

∞∑
n=1

1

2n
ρn(xn, yn)

Solution: We need to check that ρ satisfies the conditions to be a metric (and that the series
always converges).

(i) Since ρn(xn, yn) ≤ 1, we have

∞∑
n=1

1

2n
ρn(xn, yn) ≤

∞∑
n=1

1

2n
= 1 <∞.

(So the formula defining ρ makes sense, as the sum of a series of positive terms
dominated by a convergent series.)
Clearly ρ(x, y) ≥ 0 (for x = (xn)

∞
n=1 and y = (yn)

∞
n=1) since ρn(xn, yn) ≥ 0. If

ρ(x, y) = 0, we must have ρn(xn, yn) = 0 for all n and so xn = yn because ρn is a
metric (see Q1). Hence

x = (xn)
∞
n=1 = (yn)

∞
n=1 = y

(if ρ(x, y) = 0).

(ii) ρ(x, y) = ρ(y, x) always because ρn(xn, yn) = ρn(yn, xn (ρn is a metric).

(iii) (Triangle inequality)
If we have x = (xn)

∞
n=1, y = (yn)

∞
n=1 and z = (zn)

∞
n=1 (all in X), then

ρ(x, z) =
∞∑
n=1

1

2n
ρn(xn, zn) ≤

∞∑
n=1

1

2n
(ρn(xn, yn) + ρn(yn, zn))

=
∞∑
n=1

1

2n
ρn(xn, yn) +

∞∑
n=1

1

2n
ρn(yn, zn)

= ρ(x, y) + ρ(y, z)

(using the triangle inequality for each ρn).

3. For the same X and ρ as in question 2, let πn : X → Xn be the coordinate projection

πn ((xm)
∞
m=1) = xn.

Show that πn is continuous from (X, ρ) to (Xn, dn) for each n = 1, 2, . . ..
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Solution: Fix n and we use the ε-δ definition of continuity. Let ε > 0 be given.

Put δ = min(ε, 1)/2n. Then

ρ ((xm)
∞
m=1, (ym)

∞
m=1) < δ

implies

1

2n
ρn(xn, yn) <

min(ε, 1)

2n
⇒ ρn(xn, yn) < min(ε, 1)⇒ dn(xn, yn) < ε.

That means that πn is (uniformly) continuous, in particular continuous at each x = (xm)
∞
m=1 ∈

X .
There are other proofs.

Since continuity means that π−1n (U) is open in (X, ρ) for each U ⊆ Xn open, and the open
sets in Xn are the same whether we use the metric dn or the metric ρn, we can use ρn on
Xn.

Now

ρ(x, y) = ρ ((xm)
∞
m=1, (ym)

∞
m=1) =

∞∑
m=1

1

2m
ρm(xm, ym) ≥

1

2n
ρn(xn, yn)

we have
ρn(πn(x), πn(y)) = ρn(xn, yn) ≤ 2nρ(x, y).

This means that πn : (X, ρ)→ (Xn, ρn) is what is called a Lipschitz map — satisfies

ρn(πn(x), πn(y)) ≤ Cρ(x, y)

for some C ≥ 0.

Given ε > 0 we can take δ = ε/(C + 1) [just adding the 1 to make sure no division by 0]
and we have

ρ(x, y) < δ ⇒ ρn(πn(x), πn(y)) ≤ Cρ(x, y) ≤ C

C + 1
ε < ε.

That means we have uniform continuity again (with ρ and ρn this time, rather that ρ and
dn as before).

It is in fact true that, in the last question, the metric topology for (X, ρ) is the same as the
product topology. Since each πn is continuous on (X, ρ), the product topology is weaker than the
ρ-topology (as the product topology is defined to be the weakest, or smallest, topology making
all πn continuous.

If U ⊆ X is open in the product topology and x = (xm)
∞
m=1 ∈ U . then we know that there

are finitely many open sets
Vj ⊆ Xnj

(j = 1, 2, . . . , k)
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such that

x ∈
k⋂
j=1

π−1nj
(Vj) ⊆ U.

We can take the indices n1, n2, . . . , nk to be all different. If we then put Wnj
= Vj for

j = 1, 2, . . . , k and Wn = Xn for all other n we have

x ∈
∞∏
n=1

Wn =
k⋂
j=1

π−1nj
(Vj) ⊆ U.

If N = max1≤j≤k nj , then we have Wn ⊆ Xn open for n = 1, 2, . . . , N , and Wn = Xn for
n > N .

Say x = (xn)
∞
n=1. Then xn ∈ Wn for all n.

So there is δn > 0 for n = 1, 2, . . . , N so that

BXn
ρn = {y ∈ Xn : ρn(xny) < δn} ⊆ Wn

Put
δ =

1

2N
min(δ1, δ2, . . . , δN).

Then BX
ρ (x, δ) ⊂

∏∞
n=1Wn ⊆ U because if y = (yn)

∞
n=1 ∈ BX

ρ (x, δ),

ρ(x, y) =
∞∑
n=1

1

2n
ρn(xn, yn) < δ

and that implies for n = 1, 2, . . . , N

ρn(xn, yn) < 2Nδ = min(δ1, δ2, . . . , δN)⇒ ρn(xn, yn) < δn ⇒ yn ∈ BXn
ρn ⊆ Wn,

hence (y1, y2, . . . , yN) ∈ W1 ×W2 × · · · ×WN ⇒ y ∈
∏∞

n=1Wn.
So U is open in (X, ρ).

Richard M. Timoney
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