
MA3421 (Functional Analysis 1) Tutorial sheet 2
[October 13, 2016]

Name: Solutions

1. Let X and Y be topological spaces (so that TX is the topology for X and TY the topology
for Y ). Let Z = X × Y . Show that

BZ = {U × V : U ⊆ X open and V ⊆ Y open}

is a base for some topology on Z. (That topology is known as the product topology.)

Solution: We need to check just two properties for it to be a base (for some topology on
Z):

(a)
⋃

U×V ∈BZ U × V = Z

But U = X and V = Y are allowed and so Z = X × Y ∈ BZ . So Z is contained in
the union (and all the sets U × V ∈ BZ are contained in Z). So the union is exactly
all of Z.

(b) B1 ∈ BZ , B2 ∈ BZ , z ∈ B1 ∩B2 implies there is B3 ∈ BZ with z ∈ B3 ⊆ B1 ∩B2.
But if (say) B1 = U1 × V1 and B2 = U2 × V2 then B1 ∩B2 = (U1 ∩U2)× (V1 ∩ V2)
and so B1 ∩B2 ∈ BZ because U1 ∩U2 is open in X and V1 ∩ V2 is open in Y . So we
can take B3 = B1 ∩B2.

2. In R2 with the usual Euclidean metric d, consider the open ball B((x, y), r) and the (open)
square S((x, y), r) = (x− r, x+ r)× (y − r, y + r). Show that

B((x, y), r) ⊆ S((x, y), r) and S((x, y), r/
√
2) ⊆ B((x, y), r).

Solution: A picture is probably a help here, but if (a, b) ∈ B((x, y), r), that means

d((a, b), (x, y)) =
√
(a− x)2 + (b− y)2 < r.

Since squares are not negative, for any such (a, b) we have

|a− x| =
√

(a− x)2 ≤
√

(a− x)2 + (b− y)2 < r

and so a ∈ (x− r, xr). Similarly b ∈ (y − r, y + r) and so we get

(a, b) ∈ S((x, y), r).

That proves B((x, y), r) ⊆ S((x, y), r).

For the other inclusion, if (a, b) ∈ S((x, y), r/
√
2), we have |a−x| < r/

√
2 and |b− y| <

r/
√
2 and so

d((a, b), (x, y)) =
√
(a− x)2 + (b− y)2 <

√
r2

2
+

r2

2
= r.

So (a, b) ∈ B((x, y), r) and that shows S((x, y), r/
√
2) ⊆ B((x, y), r.



3. For R2 = R × R, show that the usual topology (arising from the usual Euclidean metric
d) coincides with the product topology (where R has its usual toplogy). [Hint: Question 2
should do most of the work.]

Solution: We show that if O ⊆ R2 is open in the usual topology, then it is open in the
product topology. (Later we show the opposite, that is O is open in the product topology
then it is also open in the usual topology.)

If O is open in the usual topology and (x0, y0) ∈ O, then there is r > 0 with B((x0, y0), r) ⊆
O. But then, using Question 2,

S((x0, y0), r/
√
2) =

(
x0 −

r√
2
, x0 +

r√
2

)
×
(
y0 −

r√
2
, y0 +

r√
2

)
⊆ B((x0, y0), r) ⊆ O

and that means that (x0, y0) is in the interior of O for the product topology. As that is true
of every (x0, y0) ∈ O, O must be open for the product topology.

[Another way to argue would be to say that there is an r(x0,y0) for each (x0, y0) ∈ O with

S((x0, y0), r(x0,y0)/
√
2) ⊆ O

and then

O =
⋃

(x0,y0)

(
x0 −

r(x0,y0)√
2

, x0 +
r(x0,y0)√

2

)
×
(
y0 −

r(x0,y0)√
2

, y0 +
r(x0,y0)√

2

)
has to be open in the product topology — but this is perhaps too long-winded and repeating
arguments we had already.]

If O is open in the product topology and (x0, y0) ∈ O, then there are U, V ⊆ R open with

(x0, y0) ∈ U × V ⊆ O.

But then there is r1 > 0 with (x0 − r1, x0 + r1) ⊂ U (because the ball of radius r1 about
x0 in R is the interval (x0 − r1, x0 + r1). And there is r2 > 0 with (y0 − r2, y0 + r2) ⊂ V .
If we take r = min(r1, r2), then we get

S((x0, y0), r) = (x0−r, x0+r)×(y0−r, y0+r) ⊆ (x0−r1, x0+r1)×(y0−r2, y0+r2) ⊆ U×V ⊆ O.

Then, by Question 2,
B((x0, y0), r) ⊆ S((x0, y0), r) ⊆ O.

That is what we need for O to be open in the usual metric toplogy (that we can fit inside
the set a ball of positive radius about any given point).
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