Name: Solutions

1. Let X and Y be topological spaces (so that \mathcal{T}_X is the topology for X and \mathcal{T}_Y the topology for Y). Let $Z = X \times Y$. Show that

$$\mathcal{B}_Z = \{ U \times V : U \subseteq X \text{ open and } V \subseteq Y \text{ open} \}$$

is a base for some topology on Z. (That topology is known as the product topology.) Solution: We need to check just two properties for it to be a base (for some topology on Z):

- (a) $\bigcup_{U \times V \in \mathcal{B}_Z} U \times V = Z$ But U = X and V = Y are allowed and so $Z = X \times Y \in \mathcal{B}_Z$. So Z is contained in the union (and all the sets $U \times V \in \mathcal{B}_Z$ are contained in Z). So the union is exactly all of Z.
- (b) $B_1 \in \mathcal{B}_Z, B_2 \in \mathcal{B}_Z, z \in B_1 \cap B_2$ implies there is $B_3 \in \mathcal{B}_Z$ with $z \in B_3 \subseteq B_1 \cap B_2$. But if (say) $B_1 = U_1 \times V_1$ and $B_2 = U_2 \times V_2$ then $B_1 \cap B_2 = (U_1 \cap U_2) \times (V_1 \cap V_2)$ and so $B_1 \cap B_2 \in \mathcal{B}_Z$ because $U_1 \cap U_2$ is open in X and $V_1 \cap V_2$ is open in Y. So we can take $B_3 = B_1 \cap B_2$.
- 2. In \mathbb{R}^2 with the usual Euclidean metric d, consider the open ball B((x, y), r) and the (open) square $S((x, y), r) = (x r, x + r) \times (y r, y + r)$. Show that

$$B((x,y),r) \subseteq S((x,y),r)$$
 and $S((x,y),r/\sqrt{2}) \subseteq B((x,y),r)$.

Solution: A picture is probably a help here, but if $(a, b) \in B((x, y), r)$, that means

$$d((a,b),(x,y)) = \sqrt{(a-x)^2 + (b-y)^2} < r.$$

Since squares are not negative, for any such (a, b) we have

$$|a - x| = \sqrt{(a - x)^2} \le \sqrt{(a - x)^2 + (b - y)^2} < r$$

and so $a \in (x - r, x_r)$. Similarly $b \in (y - r, y + r)$ and so we get

$$(a,b) \in S((x,y),r).$$

That proves $B((x, y), r) \subseteq S((x, y), r)$.

For the other inclusion, if $(a, b) \in S((x, y), r/\sqrt{2})$, we have $|a - x| < r/\sqrt{2}$ and $|b - y| < r/\sqrt{2}$ and so

$$d((a,b),(x,y)) = \sqrt{(a-x)^2 + (b-y)^2} < \sqrt{\frac{r^2}{2} + \frac{r^2}{2}} = r.$$

So $(a,b) \in B((x,y),r)$ and that shows $S((x,y),r/\sqrt{2}) \subseteq B((x,y),r.$

3. For $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, show that the usual topology (arising from the usual Euclidean metric *d*) coincides with the product topology (where \mathbb{R} has its usual topology). [Hint: Question 2 should do most of the work.]

Solution: We show that if $O \subseteq \mathbb{R}^2$ is open in the usual topology, then it is open in the product topology. (Later we show the opposite, that is O is open in the product topology then it is also open in the usual topology.)

If O is open in the usual topology and $(x_0, y_0) \in O$, then there is r > 0 with $B((x_0, y_0), r) \subseteq O$. But then, using Question 2,

$$S((x_0, y_0), r/\sqrt{2}) = \left(x_0 - \frac{r}{\sqrt{2}}, x_0 + \frac{r}{\sqrt{2}}\right) \times \left(y_0 - \frac{r}{\sqrt{2}}, y_0 + \frac{r}{\sqrt{2}}\right) \subseteq B((x_0, y_0), r) \subseteq O$$

and that means that (x_0, y_0) is in the interior of O for the product topology. As that is true of every $(x_0, y_0) \in O$, O must be open for the product topology.

[Another way to argue would be to say that there is an $r_{(x_0,y_0)}$ for each $(x_0,y_0) \in O$ with

$$S((x_0, y_0), r_{(x_0, y_0)} / \sqrt{2}) \subseteq O$$

and then

$$O = \bigcup_{(x_0, y_0)} \left(x_0 - \frac{r_{(x_0, y_0)}}{\sqrt{2}}, x_0 + \frac{r_{(x_0, y_0)}}{\sqrt{2}} \right) \times \left(y_0 - \frac{r_{(x_0, y_0)}}{\sqrt{2}}, y_0 + \frac{r_{(x_0, y_0)}}{\sqrt{2}} \right)$$

has to be open in the product topology — but this is perhaps too long-winded and repeating arguments we had already.]

If O is open in the product topology and $(x_0, y_0) \in O$, then there are $U, V \subseteq \mathbb{R}$ open with

$$(x_0, y_0) \in U \times V \subseteq O.$$

But then there is $r_1 > 0$ with $(x_0 - r_1, x_0 + r_1) \subset U$ (because the ball of radius r_1 about x_0 in \mathbb{R} is the interval $(x_0 - r_1, x_0 + r_1)$. And there is $r_2 > 0$ with $(y_0 - r_2, y_0 + r_2) \subset V$. If we take $r = \min(r_1, r_2)$, then we get

$$S((x_0, y_0), r) = (x_0 - r, x_0 + r) \times (y_0 - r, y_0 + r) \subseteq (x_0 - r_1, x_0 + r_1) \times (y_0 - r_2, y_0 + r_2) \subseteq U \times V \subseteq O$$

Then, by Question 2,

$$B((x_0, y_0), r) \subseteq S((x_0, y_0), r) \subseteq O.$$

That is what we need for O to be open in the usual metric toplogy (that we can fit inside the set a ball of positive radius about any given point).

Richard M. Timoney