MA3421 (Functional Analysis 1) Tutorial sheet 1

[October 6, 2016]

Name: Solution

1. In a metric space (X,d), show that a closed ball $\bar{B}(x_0,r)=\{x\in X:d(x,x_0)\leq r\}$ $(x_0\in X,\,r\geq 0)$ must be a closed set. [Explanation: you should prove this using the definition of closed set as the complement of an open set and of an open set in a metric space.]

Solution: Let $x \in X \setminus \bar{B}(x_0,r)$. So $d(x,x_0) > r$. Take $\delta = d(x,x_0) - r$ (which has $\delta > 0$). We claim that $B(x,\delta) \subset X \setminus \bar{B}(x_0,r)$, or that $B(x,\delta) \cap \bar{B}(x_0,r) = \emptyset$. If $y \in B(x,\delta) \cap \bar{B}(x_0,r)$, then that means $d(y,x) < \delta$ and $d(y,x_0) \leq r$. It implies (using the triangle inequality for d and symmetry of d)

$$d(x, x_0) \le d(x, y) + d(y, x_0) = d(y, x) + d(y, x_0) < r + \delta = d(x, x_0).$$

As $d(x, x_0) < d(x, x_0)$ can't be true, there is no such y.

From $B(x, \delta) \subset X \setminus \bar{B}(x_0, r)$, we see that x is an interior point of $X \setminus \bar{B}(x_0, r)$. As this is true of each $x \in X \setminus \bar{B}(x_0, r)$, $X \setminus \bar{B}(x_0, r)$ must be open and then $\bar{B}(x_0, r)$ has to be closed (by the definition of 'closed').

2. Consider the space $X = \{1/n : n \in \mathbb{N}\}$ with the usual absolute value distance d (from \mathbb{R}). Show that the metric topology is the discrete topology (where all subsets are open).

Solution: Fix $1/n_0 \in X$. If $n_0 = 1$, then all other points in X are $\leq 1/2$. If $n_0 > 1$, the other points of X are all either $\geq 1/(n_0-1)$ or $\leq 1/(n_0+1)$ and so the nearest other point is always $1/(n_0+1)$. If we take

$$r = \frac{1}{n_0} - \frac{1}{n_0 + 1}$$

then $B(1/n_0, r) = \{1/n_0\}$ is a singleton set and is open.

As each singleton subset of X is open, so is every subset — because every $S \subseteq X$ is the union of the singleton sets it contains $(S = \bigcup_{s \in S} \{s\})$ and arbitrary unions of open sets are open.

3. For the same (X, d) as in the previous question, find

$$B\left(\frac{1}{3}, \frac{1}{6}\right), \bar{B}\left(\frac{1}{3}, \frac{1}{6}\right)$$

and the closure of B(1/3, 1/6).

Solution: We know

$$d\left(\frac{1}{2}, \frac{1}{3}\right) = \left|\frac{1}{2} - \frac{1}{3}\right| = \frac{1}{6}$$

and so $1/2 \notin B\left(\frac{1}{3},\frac{1}{6}\right)$. However d(1/4,1/3)=1/12<1/6, d(1/5,1/3)=2/15<1/6 but d(1/6,1/3)=1/6.

So

$$B\left(\frac{1}{3}, \frac{1}{6}\right) = \left\{\frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$$

while

$$\bar{B}\left(\frac{1}{3}, \frac{1}{6}\right) = \left\{\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{2}, \frac{1}{6}\right\}.$$

As every subset of X is open, so also is every subset closed (complement will be open) and so every subset is its own closure (smallest closed subset of X containing any set $S \subseteq X$ will be S).

So the closure of $B\left(\frac{1}{3}, \frac{1}{6}\right)$ is itself.

Richard M. Timoney