
XMA34221

Faculty of Engineering, Mathematics and Science

School of Mathematics

JS & SS Mathematics
JS & SS TSM Mathematics

Trinity Term 2015

Module MA3421— Functional Analysis I

Day PLACE TIME

Prof. R. Timoney

Instructions to Candidates:

Credit will be given for the best 3 questions answered.

All questions have equal weight.

‘Formulae & tables’ are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indi-
cate the make and model of your calculator on each answer book used

In the questions K denotes one of R or C.

You may not start this examination until you are instructed to do so by the Invigi-
lator.
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1. (a) [6 points] If (X,T ) is a topological space define the concept of a base B for T .

What does it mean for T to be second countable?

Solution:

Definition 1.1. If (X,T ) is a topological space, then a subfamily B ⊆ T of

the open sets is called a base (for the open sets) of the topology if

x ∈ U ⊆ X, U open ⇒ ∃B ∈ B with x ∈ B ⊂ U

Definition 1.2. A topological space (X,T ) is called second countable if there

exists a base B for the topology where B is a countable collection of sets.

(b) [7 points] If T is the discrete topology on X, show that T is second countable if

and only if X is countable.

Solution: If X has the discrete topology, then each singleton subset {x} is open

and so in any base there must be a basic open set B with x ∈ B ⊆ {x}. That

means B = {x} is in the base. If the base is countable then X has to be countable.

Conversely if X is countable and discrete B = {{x} : x ∈ X} is a countable base

for X.

(c) [7 points] Define what it means for a toplogical space to be separable. Prove that

second countable topological spaces are always separable. Give an example of a

separable topological space which is not second countable.

Solution:

Definition 1.3. A topological space (X,T ) is called separable if there exists

a countable subset S of X that is dense in X.

Theorem 1.4. Second countable topological spaces are always separable.

Proof. Let (X,T ) be a second countable topological space. Let B be a count-

able base (for the open sets of) the topology. For each nonempty B ∈ B,

choose an element xB ∈ B. Let S = {xB : B ∈ B \ {∅}}. [In fact, if the empty

set is included in B, we could remove the empty set from B and still have a

countable base.]
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Now S is a countable set (because the map : B \ {∅} → S : B 7→ xB is a

surjective map from a countable set to S). We claim S is dense. If not S̄ 6= X

and there is x ∈ X\S̄. Since the complement of a closed set is open, there must

be B ∈ B with x ∈ B ⊆ X \ S̄. Now B 6= ∅ and so xB ∈ B ⇒ xB ∈ X \ S̄. But

S ⊆ S̄ ⇒ X \ S ⊇ X \ S̄ and so we conclude xB ∈ X \ S. But this contradicts

xB ∈ S. Hence S is countable dense.

Thus X is second countable.

Example 1.5. We introduce a very unusual topology on the set R or real num-

bers by taking as a base all intervals of the form [a, b) = {x ∈ R : a ≤ x < b}

(where a < b, a, b ∈ R).

The set of real numbers with this topology is called the Sorgenfrey line.

This is separable because the rationals are dense in this topological space.

It is not second countable because if B is any base for the open sets in this

topology, then for each x ∈ R we have x ∈ [x, x + 1) = and open set in this

space. So there must exist Bx ∈ B with x ∈ Bx ⊆ [x, x+ 1). Notice then that

x has to be the smallest element of Bx, thus guaranteeing that {Bx : x ∈ R}

is an uncountable subset of B. So there is no countable base for the topology.
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2. (a) [8 points] Let (E, ‖ · ‖) be a normed space. Show E is a Banach space if and only

if each absolutely convergent series
∑∞

n=1 xn of terms xn ∈ E is convergent in E.

Solution:

Proof. Assume E is complete and
∑∞

n=1 ‖xn‖ < ∞. Then the parial sums of

this series of positive terms

Sn =
n∑

j=1

‖xj‖

must satisfy the Cauchy criterion. That is for ε > 0 given there is N so that

|Sn − Sm| < ε holds for all n,m ≥ N . If we take n > m ≥ N , then

|Sn − Sm| =

∣∣∣∣∣
n∑

j=1

‖xj‖ −
m∑
j=1

‖xj‖

∣∣∣∣∣ =
n∑

j=m+1

‖xj‖ < ε.

Then if we consider the partial sums sn =
∑n

j=1 xj of the series
∑∞

n=1 xn we

see that for n > m ≥ N (same N)

‖sn − sm‖ =

∥∥∥∥∥
n∑

j=1

xj −
m∑
j=1

xj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥ ≤
n∑

j=m+1

‖xj‖ < ε.

It follows from this that the sequence (sn)∞n=1 is Cauchy in E. As E is complete,

limn→∞ sn exists in E and so
∑∞

n=1 xn converges.

For the converse, assume that all absolutely convergent series in E are con-

vergent. Let (un)∞n=1 be a Cauchy sequence in E. Using the Cauchy condition

with ε = 1/2 we can find n1 > 0 so that

n,m ≥ n1 ⇒ ‖un − um‖ <
1

2
.

Next we can (using the Cauchy condition with ε = 1/22) find n2 > 1 so that

n,m ≥ n2 ⇒ ‖un − um‖ <
1

22
.

We can further assume (by increasing n2 if necessary) that n2 > n1. Continuing

in this way we can find n1 < n2 < n3 < · · · so that

n,m ≥ nj ⇒ ‖un − um‖ <
1

2j
.
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onsider now the series
∑∞

j=1 xj =
∑∞

j=1(unj+1
−unj

). It is absolutely convergent

because
∞∑
j=1

‖xj‖ =
∞∑
j=1

‖unj+1
− unj

‖ ≤
∞∑
j=1

1

2j
= 1 <∞.

By our assumption, it is convergent. Thus its sequence of partial sums

sJ =
J∑

j=1

(unj+1
− unj

) = unJ+1
− un1

has a limit in E (as J →∞). It follows that

lim
J→∞

unJ+1
= un1 + lim

J→∞
(unJ+1

− un1)

exists in E. So the Cauchy sequence (un)∞n=1 has a convergent subsequence.

By a Lemma E is complete.

(b) [12 points] Define the sequence space `p and the norm ‖ · ‖p on it for 1 ≤ p <∞.

Outline the steps required to show for 1 < p <∞ that ‖ · ‖p is indeed a norm and

that (`p, ‖ · ‖p) is a Banach space.

Solution:

Definition 2.1. For 1 ≤ p < ∞, `p denotes the space of all sequences x =

{xn}∞n=1 which satisfy
∞∑
n=1

|an|p <∞.

It is a Banach space in the norm

‖(an)n‖p =

(
∞∑
n=1

|an|p
)1/p

To prove it is a norm we rely on Young’s inequality:

Lemma 2.2. Suppose 1 < p <∞ and q is defined by 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q
for a, b ≥ 0.

to show
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Lemma 2.3 (Hölder’s inequality). Suppose 1 ≤ p < ∞ and 1
p

+ 1
q

= 1 (if

p = 1 this is interpreted to mean q = ∞ and values of p and q satisfying this

relationship are called conjugate exponents). For (an)n ∈ `p and (bn)n ∈ `q,

∞∑
n=1

|anbn| ≤ ‖(an)n‖p ‖(bn)n‖q.

(This means both that the series on the left converges and that the inequality

is true.)

and

Lemma 2.4 (Minkowski’s inequality). If x = (xn)n and y = (yn)n are in `p

(1 ≤ p ≤ ∞) then so is (xn + yn)n and

‖(xn + yn)n‖p ≤ ‖(xn)n‖p + ‖(yn)n‖p

This is the triangle inequality for the norm ‖·‖p and the other properties of a norm

are straightforward.

To show that it is complete (so a Banach space), we argue that every absolutely

convergent series
∑

k xk in `p is convergent. To do that we show that the series of

nth terms must converge since |xk,n| ≤ ‖xk‖p, define a sequence y by yn =
∑

k xk,n

and then show y ∈ `p and
∑

k xk = y in `p.
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3. (a) [6 points] If (X, d) is a metric space, define the terms nowhere dense, first category

and second category (for a subset of X). State the Baire category theorem.

Solution:

Definition 3.1. A subset S ⊂ X of a metric space (X, d) (or topological space

(X,T ) is called nowhere dense if the interior of its closure is empty, (S̄)◦ = ∅.

A subset E ⊂ X is called of first category if it is a countable union of nowhere

dense subsets, that is, the union E =
⋃∞

n=1 Sn of a sequence of nowhere dense

sets Sn) ((S̄n)◦ = ∅∀n).

A subset Y ⊂ X is called of second category if it fails to be of first category.

Theorem 3.2 (Baire Category). Let (X, d) be a complete metric space which

is not empty. Then the whole space S = X is of second category in itself.

(b) [7 points] Show that if (X, d) is a metric space with X countably infinite and if

X has no isolated points, then (X, d) cannot be complete. [Hint: x ∈ X is called

isolated if {x} is an open subset of X]

Solution: If x ∈ X, then {x} is closed and since x is not an isolated point, {x}
◦

=

{x}◦ = ∅ and so {x} is nowhere dense in X. As X is countable X =
⋃

x∈X{x} is

a countabel union of nowehere dnese subsets, hence X isof first category in itself.

If (X, d) was complete, since X is not empty, the Baire cateogory theorem would

contradict this. So (X, d) cannot be complete.

(c) [7 points] State the open mapping theorem and use it to show that a bijective

bounded linear operator between Banach spaces must have bounded inverse.

Solution:

Theorem 3.3 (Open Mapping Theorem). Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be

Banach spaces and T : E → F a surjective bounded linear operator. Then

there exists δ > 0 so that

T (BE) ⊇ δBF

where BE = {x ∈ E : ‖x‖E < 1} and BF = {y ∈ F : ‖y‖F < 1} are the open

unit balls of E and F .
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Moreover, if U ⊆ E is open, then T (U) is open (in F ).

Corollary 3.4. If E,F are Banach spaces and T : E → F is a bounded linear

operator that is also bijective, then T is an isomorphism.

Proof. By the Open Mapping theorem T is automatically an open map, that

is U ⊆ E open implies T (U) ⊆ F open. But, since T is a bijection the forward

image T (U) is the same as the inverse image (T−1)−1(U) of U under the inverse

map T−1.

Thus the open mapping condition says that T−1 is continuous.
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4. (a) [10 points] Let Xn be first countable topological spaces for n = 1, 2, . . . and let

x = (x1, x2, . . .) be a point in the product
∏∞

n=1Xn and let Bn = {Bn,1, Bn,2, . . .}

be a neighbourhood base at xn ∈ Xn for each n. Assume that Bn,1 ⊇ Bn,2 ⊇

Bn,3 ⊇ · · · for each n.

Show that the sets of the form

B1,k ×B2,k × · · · ×Bk,k ×Xk+1 ×Xk+2 × · · ·

make a countable neighbourhood base at x (in the product topology).

Solution: Let N be a neighbourhood of x. Then x ∈ N◦ with N◦ open in the

product topology. So there is a basic open set B for the product topology with

x ∈ B ⊆ N◦ ⊆ N .

Basic open sets for the product topology are finite intersections

B = π−1j1
(U1) ∩ π−1j2

(U2) ∩ π−1j`
(U`)

where ` ≥ 0, j1, j2, . . . , j` are distinct elements indices 1 ≤ ji <∞ and Ui ⊆ Xji

is open for 1 ≤ i ≤ `. As usual, we use πj for the coordinate projection of the

product space onto Xj. We can alternative write

B =
∞∏
n=1

Vn

where

Vn =

Ui if n = ji for some i, 1 ≤ i ≤ `

Xn otherwise.

Alternatively we could write

B = V1 × V2 × · · · × Vr ×Xr+1 ×Xr+2 × · · ·

where r = max{ji : 1 ≤ i ≤ `}.

From x ∈ B we have xm ∈ Vm for m = 1, 2, . . . , r.

Note that if y = (y1, y2, . . .) ∈
∏∞

n=1Xn then y ∈ B is equivalent to ym ∈ Vm for

1 ≤ m ≤ r.
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Since xm ∈ Vm, Vm is open and Bm = {Bm,1, Bm,2, . . .} is a neighbourhood base

at xm ∈ Xm, there must be km ≥ 1 with xm ∈ Bm,km ⊆ Vm. Since the sets in

Bm are in decreasing order, we then also have Bm,k ⊆ Vm for k ≥ km.

Let k0 = max{k1, k2, . . . , kr}. Then

B1,k ×B2,k × · · · ×Br,k ×Xr+1 ×Xr+2 × · · · ⊆ B

for k > k0. So, if we also ensure that k ≥ r we have

B1,k×B2,k×· · ·×Bk,k×Xk+1×Xk+2×· · · ⊆ B1,k×B2,k×· · ·×Br,k×Xr+1×Xr+2×· · · ⊆ B.

So we have the neighbourhood base property, but finally we need to check that

the sets

B1,k ×B2,k × · · · ×Bm,k ×Xk+1 ×Xk+2 × · · ·

are neighbourhoods of x. That is quite easy since xm ∈ B◦m,k (for all m) and

B◦1,k ×B◦2,k × · · · ×Bm,k ◦ ×Xk+1 ×Xk+2 × · · ·

is an open set in the interior containing x.

(b) [10 points] Let xn = (xn,j)
∞
j=1 denote the sequence with jth term

xn,j =


1
n

if j = n

0 for j 6= n

Show that
∑∞

n=1 xn is convergent in `p for 1 < p < ∞ but fails to be absolutely

convergent.

Solution: If we write out xn in longhand, we find

xn = (0, 0, . . . , 0,
1

n
, 0, . . .)

(or we could say that the sequence has all zero terms apart fron the nth term,

which is 1/n). So if we compute for 1 ≤ p <∞, we find

‖xn‖p =

(
∞∑
j=1

|xn,j|p
)1/p

=

(
0p + 0p + · · ·+ 0p +

(
1

n

)p

+ 0p + · · ·
)1/p
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and so we get ‖xn‖p = (1/np)1/p = 1/n.

So
∞∑
n=1

‖xn‖p =
∞∑
n=1

1

n

and this is infinite (harmonic series does not converge).

So the series
∑∞

n=1 xn is not absolutely convergent in `p (no matter what p we

choose).

The partial sums Sn = x1 + x2 + · · ·+ xn work out as

x1 = (1, 0, 0, . . .)

x2 = (0,
1

2
, 0, 0, . . .)

...

xn = (0, 0, . . . , 0,
1

n
, 0, . . .)

Sn = (1,
1

2
,
1

3
, . . . ,

1

n
, 0, 0, . . .)

It seems reasonable to guess that the limit of these Sn must be the sequence

S = (1,
1

2
,
1

3
, . . .) =

(
1

j

)∞
j=1

and we can see if that is so by looking at limn→∞ ‖Sn − S‖p. We have

S − Sn = (0, 0, . . . , 0,− 1

n+ 1
,− 1

n+ 2
, . . .),

aand for 1 < p <∞

‖Sn − S‖p =

(
0p + 0p + · · · 0p +

∣∣∣∣− 1

n+ 1

∣∣∣∣p +

∣∣∣∣− 1

n+ 2

∣∣∣∣p + · · ·
)1/p

=

(
∞∑

j=n+1

1

jp

)1/p

.

For 1 < p <∞, the series
∑∞

j=1
1
jp

converges, so that the tail sums
∑∞

j=n+1
1
jp
→

0 as n→∞.
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