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1.1 Review: metric and topological spaces
From MA2223 last year, you should know what a metric space is and what the metric topology
is. Here is a quick refresher.

Definition 1.1.1. Given any set X of points and a function d : X ×X → [0,∞) ⊂ R with these
3 properties:

(i) d(z, w) ≥ 0 with equality if and only if z = w;

(ii) d(z, w) = d(w, z);

(iii) d(z, w) ≤ d(z, v) + d(v, w) (triangle inequality),

we say that d is a metric on the space X and we call the combination (X, d) a metric space.

Examples 1.1.2. Rn will denote the usual n-dimensional space (over R) and Cn the complex
version. We define the (standard) Euclidean distance between pairs of points in Rn by

d(x, y) =

√√√√ n∑
j=1

(xj − yj)2

(abstracting the distance formula from R2 or R3), for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
For n = 1, recall d(x, y) = |x− y|.

In the case on n-tuples z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) ∈ Cn, we also define
the standard distance via

d(z, w) =

√√√√ n∑
j=1

|zj − wj|2

Recall that for z = x+ iy ∈ C (with x, y ∈ R the real and imaginary parts of z and i2 = −1)
the modulus (or absolute value) of such a z is |z| =

√
x2 + y2. Properties: |z + w| ≤ |z| + |w|

(triangle inequality), |zw| = |z| |w| (z, w ∈ C).
The complex conjugate of z = x+ iy is z̄ = x− iy. Properties: z + w = z̄ + w̄, zw = z̄ w̄,

zz̄ = |z|2.
This gives us two examples (Rn, d) and (Cn, d) of metric spaces (for each n ≥ 1).
Besides the ‘natural’ Euclidean metric on Rn or Cn, there are several other very useful metrics

(on the same set of points).

(a) d∞(z, w) = max1≤j≤n |zj − wj|

(b) d1(z, w) =
∑

1≤j≤n |zj − wj|

(c) dp(z, w) =
(∑

1≤j≤n |zj − wj|p
)1/p

for 1 ≤ p <∞.

So d1 and d2 = d are special cases of dp and d∞ is a kind of limiting case.
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are examples. The first two are simple to check. (That is, it is quite easy to see that they are
metrics, even easier than for the standard Euclidean one in fact.) The triangle inequality for dp is
called Minkowski’s inequality and we should include a proof of it later.

So we also have the metric spaces (Rn, d∞), (Rn, dp), (Cn, d∞) and (Cn, dp) for n ≥ 2,
1 ≤ p <∞.

Notation 1.1.3. In any metric space (X, d) we define open balls as follows. Fix any point x0 ∈ X
(which we think of as the centre) and any r > 0. Then the open ball of radius r centre x0 is

B(x0, r) = {x ∈ X : d(x, x0) < r}.

The closed ball with the same centre and radius is

B̄(x0, r) = {x ∈ X : d(x, x0) ≤ r}.

Definition 1.1.4 (Open sets in a metric space). For a metric space (X, d) and a subset G ⊆ X
and a point x ∈ G, we say that x is an interior point of G if there is a ball B(x, r) of some
positive radius r > 0 centred at x so that B(x, r) ⊂ G.

A set G ⊆ X is called open if each x ∈ G is an interior point of G.

Remark 1.1.5. Picture for an open set: G contains none of its ‘boundary’ points.
In a metric space (X, d), any union G =

⋃
i∈I Gi of open sets Gi ⊆ X is open (I any index

set, arbitrarily large). Intersections G1 ∩G2 of two open sets G1, G2 ⊆ X are also open.

Remark 1.1.6. In a metric space (X, d), we can talk about limits and convergence, and about
continuous functions from X to R (or to C, or to another metric space (Y, ρ)). We will recall
how that is done below, but it is possible to express all these things using only the notion of an
open subset, without referring to the actual distance d.

Of course the price is an increase in abstraction, but it shows clearly that many of the concepts
don’t really need the distances between points. As there are different metrics on X that give the
same open sets, this additional abstraction shows that nothing about limits or continuity will be
different if we change the actual metric in a way that does not change the open sets. One instance
of that is provided by the examples (Rn, d) (with d the Euclidean distance), (Rnd∞), (Rnd1) and
more generally (Rndp) (1 ≤ p ≤ ∞).

Definition 1.1.7. If X is a set then a topology T on X is a collection of subsets of X with the
following properties

(i) φ ∈ T and X ∈ T ;

(ii) if Ui ∈ T for all i ∈ I = some index set, then
⋃

i∈I Ui ∈ T ;

(iii) if U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

A set X together with a topology T on X is called a topological space (X,T ).
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Remark 1.1.8. Normally, when we consider a topological space (X,T ), we refer to the subsets
of X that are in T as open subsets of X .

We should perhaps explain immediately that if we start with a metric space (X, d) and if we
take T to be the open subsets of (X, d) (according to the definition we gave earlier), then we get
a topology T on X . We refer to that T as the metric topology on (X, d).

Example 1.1.9. (i) One example of a topology on any set X is the topology T = P(X) = the
power set of X (all subsets of X are in T , all subsets declared to be open).

We can also get to this topology from a metric, where we define

d(x1, x2) =

{
0 if x1 = x2
1 if x1 6= x2

In this metric the open ball of radius 1/2 about any point x0 ∈ X is B(x0, 1/2) = {x0}
and all one point sets (singletons) are then open. As unions of open sets are open, it follows
that all subsets are open.

The metric is called the discrete metric and the topology is called the discrete topology.

(ii) The other extreme is to take (say when X has at least 2 elements) T = {∅, X}. This is a
valid topology, called the indiscrete topology.

If X has at least two points x1 6= x2, there can be no metric on X that gives rise to this
topology. If we thought for a moment we had such a metric d, we can take r = d(x1, x2)/2
and get an open ball B(x1, r) in X that contains x1 but not x2. As open balls in metric
spaces are in fact open subsets, we must have B(x1, r) different from the empty set and
different from X .

The only functions f : X → R that are continuous are the constant functions in this exam-
ple. On the other hand every function g : Y → X is continuous (no matter what Y is, as
long as it is a topological space so that we can say what continuity means).

This example shows that there are topologies that do not come from metrics, or topological
spaces where there is no metric around that would give the same idea of open set. Or,
in other language, topological spaces that do not arise from metric spaces (are not metric
spaces). Our example is not very convincing, however. It seems very silly, perhaps. But we
will see some better examples later.

(iii) A more complicated way to get examples is to take subsets T ⊂ X of a topological space
(X,T ) and to define a topology on T by declaring U ⊂ T to be open in case we can find
V ∈ T with T ∩ V = U .

In summary, we define a topology TT on T by the rule

TT = {T ∩ V : V ∈ T }.

One can check that this gives a topology on T . The name usually given is the subspace
topology (induced by the topology T on X).
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In case the topology T onX came from some metric d onX , the subspace topology comes
from the induced metric dT (or submetric space structure) on T .

[To spell it out, what we mean is that dT : T×T → [0,∞) is given by dT (t1, t2) =
d(t1, t2). We use the distance d from X to get a distance dT between points of
T just by forgetting about distances to points of the complement X \ T . There
are two obvious routes from (X, d) to a topology on T . One is to take the met-
ric topology T on X and pass to TT . The other is to pass to the metric space
(T, dT ) and from there to a metric topology on T . The idea is that both give the
same topology TT .]

Definition 1.1.10. Let (X,T ) be a topological space.
A subset F ⊆ X is called closed if its complement X \ F is open.

Remark 1.1.11. Picture for a closed set: F contains all of its ‘boundary’ points.
Note that open and closed are opposite extremes. There are plenty of sets which are neither

open nor closed.
One example is the ‘half-open interval’ [0, 1) = {x ∈ R : 0 ≤ x < 1} (which can also

be called ‘half-closed’. The point 0 is not an interior point — so [0, 1) ⊂ R is not open. The
point 1 ∈ R \ [0, 1) is not an interior point of the complement. So the complement R \ [0, 1) =
(−∞, 0) ∪ [1,∞) is not open either. So [0, 1) ⊂ R is neither open nor closed. (Just to be
careful, we should really say that we are using the standard absolute value metric on R and the
corresponding metric topology — the usual topology to use for R.)

An example that is perhaps more satisfying is {z = x+ iy ∈ C : 0 ≤ x, y < 1}. It is a square
in the plane C = R2 with some of the ‘boundary’ included and some not. It is again neither open
nor closed.

Proposition 1.1.12 (Simple properties of closed sets). Let (X,T ) be a topological space.

(i) Any intersection F =
⋂

i∈I Fi of closed sets Fi ⊂ X is closed.

(ii) Finite intersections of open sets are open.

(iii) Finite unions of closed sets are closed.

Proof. Exercise. [Use de Morgan’s laws for (i). Prove (ii) by induction from the case n = 2,
which is in the definition of a topology. Then use de Morgan’s laws again for (iii).]
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Definition 1.1.13. In a metric space (X, d), for any set E ⊆ X , the interior E◦ is the set of all
its interior points. Combining with the definition of interior point, we have

E◦ = {x ∈ E : ∃r > 0 with B(x, r) ⊆ E}

Lemma 1.1.14. Let (X, d) be a metric space and E ⊂ X . Then

E◦ =
⋃
{G : G ⊆ E,G open in X}

Definition 1.1.15. In a topological space (X,T ), for any set E ⊆ X , the interior E◦ is

E◦ =
⋃
{G : G ⊆ E,G open in X}

Lemma 1.1.16. Let (X,T ) be a topological space and E ⊆ X . Then E◦ is the largest open
subset of X contained in E.

Proof. Exercise.

Remark 1.1.17. Picture: E◦ is E minus all its ‘boundary’ points.

Definition 1.1.18. In a topological space (X,T ), for any set E ⊆ X , the closure of E is

Ē =
⋂
{F : F ⊂ X,E ⊂ F and F closed}

Lemma 1.1.19. Let (X,T ) be a topological space and E ⊆ X . Then Ē is the smallest closed
subset of X containing E.

Proof. Exercise.

Remark 1.1.20. Picture: Ē is E with all its ‘boundary’ points added.

Proposition 1.1.21 (Properties of interiors and closures). Let (X,T ) be a topological space and
E ⊆ X .

Ē = X \ (X \ E)◦ and E◦ = X \ (X \ E).

Proof. Exercise.

Definition 1.1.22. Let (X,T ) be a topological space and E ⊆ X .
The boundary ∂E of E is defined as ∂E = Ē \ E◦.

Remark 1.1.23. This formal definition makes the previous informal pictures into facts.

Remarks 1.1.24. The main properties of interiors, closures and boundaries are as follows (for
E ⊂ X , X a topological space).

• (about complements) Proposition 1.1.21 above.

• ∂(X \ E) = ∂E.
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• E is closed ⇐⇒ E = Ē ⇐⇒ ∂E ⊆ E

• E is open ⇐⇒ E = E◦ ⇐⇒ ∂E ∩ E = ∅.

• (about unions of two sets E1, E2 ⊆ X) E◦1 ∪ E◦2 ⊆ (E1 ∪ E2)
◦ and Ē1 ∪ Ē2 = E1 ∪ E2.

[The union of the interiors is not necessarily the interior of the union. Consider rational
and irrational numbers in R, which both have empty interior but where the union is open.]

• (about intersection of two setsE1, E2 ⊆ X) Ē1∩Ē2 ⊇ E1 ∩ E2 andE◦1∩E◦2 = (E1∩E2)
◦.

[The intersection of the closures can be a lot bigger than the closure of the intersection —
look at rational and irrational numbers again.]

1.2 Review: continuity
Definition 1.2.1. Let (X, dX) and (Y, dY ) be two metric spaces.

If f : X → Y is a function, then f is called continuous at a point x0 ∈ X if for each ε > 0 it
is possible to find δ > 0 so that

x ∈ X, dX(x, x0) < δ ⇒ dY (f(x), f(x0)) < ε

f : X → Y is called continuous if it is continuous at each point x0 ∈ X .
If we have a function g : T → Y defined only on a subset T ⊂ X we define continuity of g

(on T ) by thinking of T as a submetric space ofX , and then requiring that g should be continuous
in the above sense between (T, dT ) and (Y, dY ).

Remark 1.2.2. It is also not hard to see that if we think of that range Z = f(X) of a function
f : X → Y (between metric spaces X and Y ), then the function f is continuous if and only if it
is continuous when we consider it as a function f : X → Z from X to the submetric space Z of
Y .

Example 1.2.3. If (X, d) is a metric space and f : X → R is a function, then when we say
f is continuous we mean that it is continuous from the metric space X to the metric space
R = (R, usual absolute value metric).

Similarly for complex valued functions f : X → C, we normally think of continuity to mean
the situation where C has the usual metric.

Proposition 1.2.4. If f : X → Y is a function between two metric spaces X and Y , then f is
continuous if and only if it satisfies the following condition: for each open set V ⊂ Y , its inverse
image f−1(V ) = {x ∈ X : f(x) ∈ V } is open in X .

Proof. Exercise.

Remark 1.2.5. Since the criterion in the Proposition is purely topological, we can use it to define
continuity (on the whole space) of functions between topological spaces. We can be sure that
this will be a generalisation of the metric case.
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Definition 1.2.6. Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y a function. We
say that f is continuous if it satisfies

V ∈ TY ⇒ f−1(V ) ∈ TX .

(In words, that says: for each open set V ⊂ Y , its inverse image f−1(V ) is open in X .)

Remark 1.2.7. We will come back later to the question of what it means for a function between
topological spaces to be continuous at just one point.

Proposition 1.2.8. Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y a function.
Let Z = f(Y ) and TZ the topology induced on Z by TY . Then f is continuous X to Y if and
only if it is continuous when regarded as a function from X (with its topology TX) to Z with the
topology TZ .

Proof. Exercise.

1.3 Review: limits of sequences
Definition 1.3.1 (Limits of sequence is a metric space). Let (X, d) be a metric space (X, d).

A sequence (xn)∞n=1 in X is actually a function x : N → X from the natural numbers N =
{1, 2, . . .} to X where, by convention, we use the notation xn instead of the usual function
notation x(n).

To say limn→∞ xn = ` (with ` ∈ X also) means:

for each ε > 0 it is possible to find N ∈ N so that

n ∈ N, n > N ⇒ d(xn, `) < ε.

Remark 1.3.2. An important property of limits of sequences in metric spaces is that a sequence
can have at most one limit. In a way we have almost implicitly assumed that by writing limn→∞ xn
as though it is one thing. Notice however that there are sequences with no limit.

Proposition 1.3.3. Let X and Y be two metric spaces. If f : X → Y is a function and x0 ∈ X is
a point, then f is continuous at x0 if and only if limn→∞ f(xn) = f(z0) holds for all sequences
(xn)∞n=1 in X with limn→∞ xn = x0.

Remark 1.3.4. Consider the case where we have sequences in R, which is not only a metric space
but where we can add and multiply.

One can show that the limit of a sum is the sum of the limits (provided the individual limits
make sense). More symbolically,

lim
n→∞

xn + yn = lim
n→∞

xn + lim
n→∞

yn.

Similarly
lim
n→∞

xnyn =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
.
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if both individual limits exist.
We also have the result on limits of quotients,

lim
n→∞

xn
yn

=
limn→∞ xn
limn→∞ yn

provided limn→∞ yn 6= 0. In short the limit of a quotient is the quotient of the limits provided
the limit in the denominator is not zero.

One can use these facts to show that sums and products of continuous R-valued functions on
metric spaces are continuous. Quotients also if no division by 0 occurs.

Definition 1.3.5 (Limits of sequences in a topological space). Let (X,T ) be a topological space,
(xn)∞n=1 a sequence of elements xn ∈ X and ` ∈ X .

To say the sequence (xn)∞n=1 converges to the limit ` means:

for each U ∈ T with ` ∈ U , there is N ≥ 1 so that that

n ∈ N, n > N ⇒ xn ∈ U.

We use the notation “xn → ` as n→∞” to denote convergence to `.

Lemma 1.3.6. In the case of a metric space (X, d) and the corresponding metric topology T ,
a sequence (xn)∞n=1 converges to a limit ` ∈ X in the topological space (X,T ) if and only if
limn→∞ xn = ` in (X, d).

Proof. Exercise.

Example 1.3.7. An important thing is that a sequence in a topological space may have more than
one limit. We will come back to this, but here are two examples where it happens.

(i) Let X = {0, 1} and T the indiscrete topology T = {∅, X}. Then every sequence (xn)∞n=1

converges to both 0 and 1.

Proof. The only open set that contains 0 is X , and xn ∈ X is always true. So xn → 0 as
n→∞. Similarly xn → 1 as n→∞.

(ii) Let X = {0, 1} and T = {∅, {0}, X}. Then (X,T ) is a topological space. (Check!)

Consider the sequence (xn)∞n=1 where xn = 0 for each n. Then (xn)∞n=1 has both 0 and 1 as
limits.

Proof. To check that T is a topology, it is clear that ∅, X ∈ T . Unions of sets from T
are again in T (if all sets in the union are empty or if it is the empty union, the union is
∅ ∈ T ; if not and X is one of the sets the union is X ∈ T ; finally if not either of the above
all the sets in the union are contained in {0} and {0} is one of the sets in the union, so that
the union is {0} ∈ T ).



10 Chapter 1: Bases for topologies

Intersections of two sets from T are again in T (because for any two sets in T one is
contained in the other and so the intersection of two sets from it is equal to one of the two
sets).

The sequence xn = 0 (n = 1, 2, . . .) in X has limit 0. But it also has limit 1 because the
only open sets that contains 1 is X = {0, 1}. So the constant zero sequence has two limits
in this topology.

Another strange fact is that every sequence in X converges to 1.

Definition 1.3.8 (Compactness). Let (X,T ) be a topological space.
Let T ⊆ X . An open cover of T is a family U of open subsets of X such that

T ⊆
⋃
{U : U ∈ U}

A subfamily V ⊆ U is called a subcover of U if V is also a cover of T .
T is called compact if each open cover of T has a finite subcover.

Remark 1.3.9. If (X, d) is a metric space, then a subset T ⊆ X is called bounded if there exists
R ≥ 0 and x0 ∈ X with T ⊆ B̄(x0, R).

One way to state the Heine-Borel theorem is that a subset T ⊆ Rn is compact if and only if
it is both (1) closed and (2) bounded.

Proposition 1.3.10. Continuous images of compact sets are compact: T ⊆ X compact, f : T →
Y continuous implies f(T ) compact.

Definition 1.3.11 (sequential compactness). If (X,T ) is a topological space, then a subset T ⊂
X is called sequentially compact if it has the following property:

Each sequence (tn)∞n=1 has a subsequence (tnj
)∞j=1 that converges to some limit ` ∈

T .

Theorem 1.3.12. In a metric space (X, d) a subset T ⊂ X is compact if and only if it is sequen-
tially compact.

Proof. Omitted here.

Remark 1.3.13. It should be noted that this latter theorem and Proposition 1.3.3 do not hold for
general topological spaces. We will return to this point later on.

We digress to mention connectedness very briefly because forward images (under continuous
maps) of connected sets are connected, like forward images of compact sets. Most of the time it
is inverse images that behave well.

Definition 1.3.14 (Connectedness). We say a topological space (X,T ) is connected if the only
subsets S ⊂ X which are simultaneously open and closed are S = ∅ and S = X .

A subset T ⊂ X is called a connected subset if it is connected when we consider it as a
topological space by taking the subspace topology on it.
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Proposition 1.3.15. If (X,T ) is a topological space thenX is connected if and only if it satisfies

for each continuous f : X → R with f(X) ⊆ {0, 1}, f is constant.

Proposition 1.3.16. Continuous images of connected sets are connected.
That is, if X and Y are topological spaces, f : X → Y is continuous and if T ⊆ X is

connected, then f(T ) ⊆ Y is connected.

1.4 Base for a topology
In many cases, it is desirable to be able to describe all open sets in terms of simpler ones (as we
do in a metric space when we use open balls to describe all open sets). This is the idea of the
next definition.

Definition 1.4.1. If (X,T ) is a topological space, then a subfamily B ⊆ T of the open sets is
called a base (for the open sets) of the topology if

x ∈ U ⊆ X , U open⇒ ∃B ∈ B with x ∈ B ⊂ U

Example 1.4.2. (X, d) a metric space, B = {B(x, r) : x ∈ X, r > 0} (all open balls in X) is
a base for the topology. This is true because of the way we define the metric topology (together
with the fact that open balls B(x, r) are open sets in the metric topology).

An example that is slightly more interesting is, in a metric space (X, d) again, B = {B(x, 1/n) :
x ∈ X,n ∈ N}. To see that this is a base, consider x ∈ U ⊆ X with U open. By definition of
the metric topology, there is r > 0 with B(x, r) ⊆ U . But then there is n ∈ N with 1/n < r,
and for this n we have x ∈ B(x, 1/n) ⊆ B(x, r) ⊆ U . The fact x ∈ B(x, 1/n) ⊆ U is what we
wanted to establish, showing we have a base.

Proposition 1.4.3. If B is a base for (the open sets of) a topology T on a set X , then every open
set in X is a union of sets from B.

Proof. Let U ⊆ X open (that is U ∈ T ). For each x ∈ U there is B ∈ B with x ∈ B ⊆ U . Pick
one such B for each x and call it Bx. So now we have a family {Bx : x ∈ U} of basic open sets
with x ∈ U ⇒ x ∈ Bx ⊆ U .

Consider the union V =
⋃

x∈U Bx. We have V ⊆ U since Bx ⊆ U∀x ∈ U . But we have
have U ⊆ V since x ∈ U ⇒ x ∈ Bx ⊆ V ⇒ x ∈ V .

So U = V = a union of basic open sets.

Definition 1.4.4. A topological space (X,T ) is called second countable if there exists a base B
for the topology where B is a countable collection of sets.

Example 1.4.5. Consider X = Rm (m ≥ 1) with the standard Euclidean metric (and the metric
topology). By Qm we mean the points in Rm where all coordinates are rational numbers. Let
B = {B(q, 1/n) : q ∈ Qm, n ∈ N}.

Then there is a surjection (in fact a bijection) : Qm×N→ B and, since Qm×N is countable
we have B countable.
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To see that B is a base for the open sets in Rm consider x ∈ U ⊆ Rm with U open. Then
there is an open ball B(x, r) ⊆ U (a ball in the usual metric of radius r > 0). We can find n ∈ N
with 1/n < r/2. We can also find q ∈ Qm with d(x, q) < 1/n (because all m coordinates of x
can be approximated by rational numbers within 1/(n

√
m)). Consider now B(q, 1/n).

As d(x, q) < 1/nwe have x ∈ B(q, 1/n). But we also haveB(q, 1/n) ⊆ B(x, 2/n) (because
y ∈ B(q, 1/n) ⇒ d(y, q) < 1/n ⇒ d(y, x) ≤ d(y, q) + d(q, x) < 1/n + 1/n = 2/n ⇒ y ∈
B(x, 2/n)). So we conclude B(q, 1/n) ⊆ B(x, 2/n) ⊆ B(x, r) ⊆ U .

In summary x ∈ B(q, 1/n) ⊆ U (for some q ∈ Qm and n ∈ N). This is what is needed to
show we have a base (that we can do it for any x ∈ U open).

We have a countable base and so we have shown Rm is second countable.

It can be quite useful to have a countable base, as certain constructions can then be done by
considering only countably many open sets (rather than a much bigger number of all open sets
as in Rm).

We can generalise the construction in the example to other metric spaces if we can find a
countable set to replace Qm ⊂ Rm.

Definition 1.4.6. If (X,T ) is a topological space and S ⊆ X , then S is called dense in X if
S̄ = X (closure of S is X).

For example S = Q is dense in X = R.

Definition 1.4.7. A topological space (X,T ) is called separable if there exists a countable
subset S of X that is dense in X .

We usually say a ‘countable dense subset’.

Example 1.4.8. If m ≥ 1, then Qm is a countable dense subset of Rm (using the usual topology).
On the other hand ifX has the discrete topology, then the closure S̄ = S for every S ⊂ X (as

every subset is open, and every subset is closed). So the only dense subset is S = X . It follows
that a discrete space has to be countable if it is separable.

An uncountable set with the discrete topology is not separable.

Theorem 1.4.9. Second countable topological spaces are always separable.

Proof. Let (X,T ) be a second countable topological space. Let B be a countable base (for
the open sets of) the topology. For each nonempty B ∈ B, choose an element xB ∈ B. Let
S = {xB : B ∈ B \ {∅}}. [In fact, if the empty set is included in B, we could remove the empty
set from B and still have a countable base.]

Now S is a countable set (because the map : B \ {∅} → S : B 7→ xB is a surjective map
from a countable set to S). We claim S is dense. If not S̄ 6= X and there is x ∈ X \ S̄. Since the
complement of a closed set is open, there must be B ∈ B with x ∈ B ⊆ X \ S̄. Now B 6= ∅ and
so xB ∈ B ⇒ xB ∈ X \ S̄. But S ⊆ S̄ ⇒ X \ S ⊇ X \ S̄ and so we conclude xB ∈ X \ S. But
this contradicts xB ∈ S. Hence S is countable dense.

Thus X is second countable.

Theorem 1.4.10. Separable metric spaces are second countable.
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Proof. The proof for this is very much like the proof that Rm is second countable.
Let (X, d) be a metric space and S ⊆ X a countable dense subset. We show that B =

{B(s, 1/n) : s ∈ S : n ∈ N} is a base via the same 1/n < r/2 argument we used when
X = Rm and S = Qm.

This result does not hold for topological spaces in general. One way to produce an example
is to start with a base for a (slightly strange) topology. We need to know what properties a base
has to have.

Theorem 1.4.11. Let X be a set.

(i) If T is a topology on X and B is a base for (the open sets of) the topology, then we must
have the following two properties satisfied by B:

•
⋃
{B : B ∈ B} = X

• B1, B2 ∈ B, x0 ∈ B1 ∩B2 ⇒ ∃B3 ∈ B with x0 ∈ B3 ⊆ B1 ∩B2.

(ii) Conversely, if B ⊆ P(X) is a collection of subsets of X that satisfies the above two prop-
erties, then there is a topology on X for which B is a base.

Proof. (i) Each base has the first property since X is open and open sets are unions of basic
open sets (by Proposition 1.4.3).

If x0 ∈ B1 ∩ B2 with B1, B2 ∈ B, then B1 ∩ B2 is open and the existence of B3 with
x0 ∈ B3 ⊆ B1 ∩B3 follows by the definition of a base.

(ii) Assume B satisfies the two properties and take for T all possible unions of subcollections
of B. One detail is that we include the empty union as the empty set.

We claim that T is a topology on X and that B is a base for T . We have a number of
things to check to verify that T is a topology:

• ∅ ∈ T — by our convention that we take the empty union to be included in T

X ∈ T — by the assumption that the union of B is X .

• T is closed under taking arbitrary unions of subcollections of T — true because a
union of unions of sets from B is again a union of sets from B.

• T is closed under taking intersections of two sets. If U1 =
⋃

i∈I1 B1i and U2 =⋃
j∈I2 B2j (where I1 and I2 are index sets and B1i ∈ B∀i ∈ I1, B2j ∈ B∀j ∈ I2) then

we have
U1 ∩ U2 =

⋃
i∈I1,j∈I2

B1i ∩B2j.

Since we already know T is closed under taking arbitrary unions, we just need to
know B1i ∩B2j ∈ T ∀i, j.
In other words it is sufficient to know B1, B2 ∈ B ⇒ B1 ∩ B2 ∈ T . For each
x ∈ B1 ∩ B2 we know, by the second assumption about B that there is Bx ∈ B with
x ∈ Bx ⊆ B1 ∩B2. Then B1 ∩B2 =

⋃
x∈B1∩B2

Bx ∈ T .
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So this concludes the verification that T is a topology.

Finally B is a base for T because B ⊆ T and x ∈ U ∈ T ⇒ ∃B ∈ B with x ∈ B ⊆ U
because U is a union

⋃
i∈I Bi of sets Bi ∈ B and (at least) one of the Bi must contain x.

This Bi will do for B.

Example 1.4.12. We introduce a very unusual topology on the set R or real numbers by taking
as a base all intervals of the form [a, b) = {x ∈ R : a ≤ x < b} (where a < b, a, b ∈ R).

To see that there is a topology with this as its base, we just have to check the two simple
properties of the theorem. As x ∈ [x, x + 1)∀x ∈ R we can see

⋃
a<b[a, b) = R. Next the

intersection of two of these intervals [a1, b1) ∩ [a2, b2) is either empty or of the form [a, b) where
a = max(a1, a2) and b = min(b1, b2). So if x0 ∈ [a1, b1) ∩ [a2, b2), the intersection is not empty
and there is [a, b) with x0 ∈ [a, b) ⊆ [a1, b1) ∩ [a2, b2).

The set of real numbers with this topology is called the Sorgenfrey line.
We claim that this topological space is separable but not second countable.
To see that it is separable, we show that the rationals are dense in this topological space. If

not, there is a point x not in the closure of the rationals. Let Y denote this closure of the rationals
and now we have x ∈ R \ Y , an open set in the Sorgenfrey topology. Thus there is an interval
[a, b) with a < b and x ∈ [a, b) ⊆ R \ Y . But then there must be a rational q ∈ [a, b) ∩Q. This
q ∈ [a, b) ⊆ R \ Y ⇒ q /∈ Y ⇒ q /∈ Q (as Q ⊆ Y = its closure). This is a contradiction. So Q
is a dense subset (and countable). So the topology is separable.

It is not second countable because if B is any base for the open sets in this topology, then for
each x ∈ R we have x ∈ [x, x+1) = and open set in this space. So there must existBx ∈ B with
x ∈ Bx ⊆ [x, x+ 1). Notice then that x has to be the smallest element of Bx, thus guaranteeing
that {Bx : x ∈ R} is an uncountable subset of B. So there is no countable base for the topology.

Proposition 1.4.13. Let f : X → Y be a function between topological spaces X and Y . Let BY

be a base for the open sets in Y . Then the following are equivalent conditions:

(a) f is continuous

(b) f−1(B) is open in X for each B ∈ BY .

Proof. (a)⇒ (b): This is clear since each B ∈ BY is open in Y .
(b)⇒ (a): Let U ⊆ Y be open. Then we know U =

⋃
i∈I Bi for some collection {Bi : i ∈ I}

of basic open sets Bi ∈ BY . So f−1(U) =
⋃

i∈I f
−1(Bi) is open in X (as a union of open sets).

Thus f is continuous.

1.5 Sub-bases, weak and product topologies

Remark 1.5.1. We consider now this question. Suppose we have a topological space X and we
know that certain sets are open. Then what other sets must be open?
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Definition 1.5.2 (Weaker and stronger topologies). Let X be a set and suppose there are two
topologies T1 and T2 on X .

We say that T1 is weaker than T2 if there are fewer open sets in T1 than in T2, that is if
T1 ⊆ T2.

Sometimes we say that T2 is stronger than T1 to mean exactly the same thing, or T2 ⊇ T1.1.

Theorem 1.5.3. Given a setX and any collection S of subsets ofX , there is a (unique) weakest
topology T on X such that S ⊆ T . [In that case we call S a sub-base for the topology T .]

There are (at least) two ways to prove this, a slick way and a more informative way.

Proof (Slick way). Consider the all possible topologies on X that contain S , that is consider

TS = {U : U ,U a topology on X,U ⊇ S }.

We know there is at least one topology in TS because the discrete topology P(X) is in TS .
Then we take

T =
⋂
{U : U ∈ TS }

and verify that T is a topology. It then clearly satisfies T ⊆ U for each U ∈ TS so that it is
the weakest of all topologies on X that contain S .

To verify that the intersection is a topology, note that φ,X ∈ T since TS 6= ∅ and φ,X ∈ U
holds for each U ∈ TS . For unions, suppose Ui ∈ T for each i ∈ I (I some index set). Then
Ui ∈ U for each U ∈ TS . As U is a topology on X we have

⋃
i∈I Ui ∈ U . As this holds for

each U ∈ TS we have
⋃

i∈I Ui ∈ T . The verification that U1, U2 ∈ T implies U1 ∩ U2 ∈ T is
similar.

Proof (more constructive). We take B to be the set of all finite intersections of sets from S and
show that B is a base for a topology on X .

To cover everything properly, we need to include the empty intersection, which we take to
mean the whole space X . So the sets in B are all the sets of the form S1 ∩ S2 ∩ · · · ∩ Sn where
n ≥ 0 and S1, S2, . . . , Sn ∈ S .

To show that B is a base for some topology TB on X we need to check the two properties
from Theorem 1.4.11. Certainly

⋃
{B : B ∈ B} = X because X ∈ B and B ⊆ X for each

B ∈ B. Also if B1, B2 ∈ B and x ∈ B1 ∩ B2, then we have B3 = B1 ∩ B2 ∈ B by the way we
defined B. So x ∈ B3 ⊆ B1 ∩B2.

Finally, notice that any topology U on X that contains the sets in S must contain the finite
intersections in B. So it contains arbitrary unions of sets from B. But these make up the topology
TB. So TB ⊆ U . Hence TB is the weakest topology in X containing S .

Theorem 1.5.4. Let X be a set and {fi : X → Yi : i ∈ I} a collection of functions from X
to topological spaces Yi. Then there is a weakest topology on X that makes the maps fi all
continuous (called the ‘weak topology generated by the maps fi’).

1There is another fairly standard terminology of ‘coarser’ and ‘finer’, which we will avoid. Coarser means
weaker and finer means the opposite inclusion.
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A base for this weak topology is given by all finite intersections

n⋂
r=1

f−1ir
(Ur)

with n ≥ 0, i1, i2, . . . , in ∈ I distinct and Ur ⊆ Y ir open.

Proof. We want a topology T on X so that each fi is continuous. That is we need f−1i (U) ∈ T
for each open set U ⊆ Yi.

We should take as our sub-base the family {f−1i (U) : i ∈ I, U ⊆ Yi open}. Then we can
apply the above Theorem 1.5.3.

By the constructive proof of Theorem 1.5.3, a base for the weak topology can be obtained by
taking arbitrary finite intersections of sets from the sub-base. That is all sets of the form

n⋂
r=1

f−1ir
(Ur)

with n ≥ 0, i1, i2, . . . , in ∈ I and Ur ⊆ Y ir open. We can eliminate repetitions among
i1, i2, . . . , in because if ir = is, then

f−1ir
(Ur) ∩ f−1is

(Us) = f−1ir
(Ur) ∩ f−1ir

(Us) = f−1ir
(Ur ∩ Us)

and Ur ∩ Us ⊂ Y ir is open. Thus we can eliminate one repetition by removing is and replacing
Ur by Ur ∩ Us, and we can continue until all repetitions are gone.

Definition 1.5.5. Let X and Y be two topological spaces. We define the topological product
space to be the set X × Y (of ordered pairs (x, y) with x ∈ X , y ∈ Y ) with the topology which
has as its base

{U × V : U ⊂ X open, V ⊂ Y open}

Remark 1.5.6. To justify the definition we must show that there is a topology on X × Y with the
given base. Via Theorem 1.4.11 we just need to show that the union of all these sets in X × Y
(easy as X × Y is one of them) and a property about intersections. As

(U1 × V1) ∩ (U2 ∩ V2) = (U1 ∩ U2)× (V1 ∩ V2)

is of the same form again (U1 ∩ U2 is open in X if U1, U2 ⊂ X open, and similarly for V1 ∩ V2)
the property about intersections is easy to verify.

So the definition is justified.

Theorem 1.5.7. Let X and Y be topological spaces and Tprod the product topology on X × Y .
Denote by πX : X×Y → X , πY : X×Y → Y the coordinate projections given by πX(x, y) = x,
πY (x, y) = y.

(i) πX : X × Y → X and πY : X × Y → Y are both continuous when X × Y is given the
topology Tprod (and X , Y their original topologies).
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(ii) Tprod is the weak topology on the set X×Y generated by the maps πX : X×Y → X and
πY : X × Y → Y .

(iii) If Z is another topological space and f : Z → X × Y is a function, then f is continuous if
and only if πX ◦ f : Z → X and πY ◦ f : Z → Y are each continuous.

Proof. (i) If U ⊂ X is open, then (πX)−1(U) = U × Y is open in Tprod (being a basic open
set). Thus πX is continuous.

As (πY )−1(V ) = X × V for V ⊂ Y , a similar argument shows that πY is continuous.

(ii) If there is a topology T ′ in which πX and πY are each continuous, let U ⊂ X and V ⊂ Y
be open.

As (πX)−1(U) = U×Y ∈ T ′ follows by continuity of πX and (πY )−1(V ) = X×V ∈ T ′

by continuity of πY , we must have

U × V = (U × Y ) ∩ (X × V ) ∈ T ′.

As every set W ∈ Tprod is a union of basic open sets of the type U × V we have W =⋃
i∈I Ui × Vi ∈ T ′.

Thus Tprod ⊆ T ′.

(iii) To show that continuity of f implies continuity of both πX ◦ f and πY ◦ f , we use the fact
that compositions of continuous functions are continuous. [Exercise: prove that.]

For the other direction of the ⇐⇒ , assume now that both πX ◦f and πY ◦f are continuous.
Since πX ◦ f is continuous, if U ⊂ X is open then

(πX ◦ f)−1(U) = f−1((πX)−1(U)) = f−1(U × Y )

is open in Z. Similarly, if V ⊂ Y is open, (πY ◦ f)−1(V ) = f−1(X × V ) is open in Z.
Thus

f−1(U × V ) = f−1((U × Y ) ∩ (X × V )) = f−1(U × Y ) ∩ f−1(X × V )

is open. As the inverse image of every basic open set in X × Y is open in Z, we conclude
that f is continuous. (See Proposition 1.4.13 (b).)

Examples 1.5.8. Let X = Y = R with the usual topology (given by the absolute value metric
d(x1, x2) = |x1 − x2|). Then there are several ‘obvious’ candidates for metrics on X × Y = R2

which have been given before in Examples 1.1.2. They include

d∞((x1, y1), (x2, y2)) = max(|x1 − x2|, |y1 − y2|)
d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|
d((x1, y1), (x2, y2)) =

√
|x1 − x2|2 + |y1 − y2|2
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We know that each of these is a metric on R2.
Now, it turns out that the metric topology (open sets) will be the same in each of these metrics

and will be the product topology. It is quite easy to see in the case of d∞ that the metric topology
is the product topology because open balls in d∞ are products of open intervals:

Bd∞((x0, y0), r) = {(x, y) ∈ R2 : d∞((x, y), (x0, y0)) < r}
= (x0 − r, x0 + r)× (y0 − r, y0 + r)

and thus are basic open sets in the product topology. It follows that open sets in the metric
topology of R2, d∞) are open in the product topology. On the other hand ifW ⊂ R2 is open in the
product topology and (x0, y0) ∈ W , then there are open U, V ⊆ R with (x0, y0) ∈ U × V ⊆ W .
Thus there are r1, r2 > 0 so that

{x ∈ R : |x− x0| < r1} ⊂ U, {y ∈ R : |y − y0| < r2} ⊂ V.

For r = min(r1, r2) we have Bd∞((x0, y0), r) ⊆ U × V ⊆ W and so (x0, y0) is an interior point
of W in the metric topology from d(∞). Since (x0, y0) ∈ W was arbitrary, W is open in the
metric topology. This shows [in detail!] that the metric topology from d∞ coincides with the
product topology.

To show that all the metric topologies are the same, one way is to show that every open ball
in one metric contains an open ball with the same centre (but a different radius). This shows that
interior points of a set W ⊂ R2 are the same no matter which metric is used. If the notion of an
interior point is the same, then so is the notion of open set.

There are fairly elementary inequalities relating the 3 distances

d∞(p1, p2) ≤ d(p1, p2) ≤ d1(p1, p2) ≤ 2d∞(p1, p2)

(for points p1, p2 ∈ R2) and these show that

Bd1(p, r) ⊆ Bd(p, r) ⊆ Bd∞(p, r) ⊆ Bd1(p, 2r)

It may help to draw these balls. Bd1(p, r) is a kind of diamond (of diagonal 2r), Bd a disc (of
radius r or diameter 2r) and Bd∞ a square (of side 2r).



MA3421 2016–17 19

Remark 1.5.9. A consequence of Theorem 1.5.7 (iii) (and the previous example) is that a function
f : Z → R2 on a topological space Z with values in the plane will be continuous if and only if
the coordinate functions are continuous. In other words, if we write f(ζ) = (f1(ζ), f2(ζ)) we
know that f is continuous if and only if both f1 : X → R and f2 : X → R are continuous.

There is no such theorem in the other direction, for functions from R2 with values in some
topological space. What you might guess could be true is that if (say) F : R2 → R has x 7→
F (x, y0) continuous for each fixed y0 and also y 7→ F (x0, y) continuous for each fixed x0 then
maybe F would be continuous on R2. The condition that fixing all but one of the variables in a
multivariable function gives a continuous map is called separate continuity, but it does not imply
continuity even in the simple case of two real variables. An example to show this is

F (x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

It is easy to see that F is separately continuous but F (x, x) = 1/2 for all x 6= 0 while F (0, 0) = 0
shows that F is not continuous at (0, 0) ∈ R2 (by choosing x small we have d((x, x), (0, 0)) as
small as we want [for d the standard euclidean distance, say] but F (x, x)− F (0, 0) = 1/2).

Definition 1.5.10. Consider a family (Xi,Ti) of topological spaces indexed by i ∈ I . Let X =∏
i∈I Xi be the cartesian product set and πj : X → Xj the coordinate projection πj((xi)i∈I) = xj

(for j ∈ I).
Then (by Theorem 1.5.4) there is a (unique) weakest topology on X among all topologies T

on X such that πi : (X,T )→ (XiTi) is continuous for each i ∈ I .
We call the weak topology on X generated by the family of coordinate projection πi : X →

Xi (i ∈ I) the product topology on X .

Remark 1.5.11. Now notice from Theorem 1.5.4 that the collection of all such finite intersections

B =

{
n⋂

r=1

(πir)
−1(Ur) : n ≥ 0, i1, i2, . . . , in ∈ I distinct, Ur ∈ Tir

}

forms a base for some topology on X . (We include the empty intersection n = 0 with the
convention that the empty intersection means all of X , though this is not really necessary. As
long as I 6= ∅ we can fix some i ∈ I and consider (πi)

−1(Xi) = X . This is covered by the n = 1
case and is in B.)

The open sets in Tp are all unions of sets from B.

Remarks 1.5.12. Notice that in the case of a product of two topological spaces X1×X2 (say) the
product topology as defined in the statement of the foregoing theorem is the same as the product
topology defined previously in 1.5.5 (because of Theorem 1.5.7 (ii)).

We can explain what the base B constructed above looks like in a way that is a bit more
concrete. If X =

∏
i∈I Xi as above, πi also as above, and V ⊂ Xi open, then (πi)

−1(V ) =∏
j∈I Uj where Uj = Xj for all j 6= i and Ui = V . Now, when we take an intersection of two

such sets (πi)
−1(V ) for different i.
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Suppose i1 6= i2 ∈ I and V1 ⊂ Xi1 , V2 ⊂ Xi2 both open. In that case we can write

(πi1)
−1(V1) ∩ (πi2)

−1(V2) =
∏
i∈I

Ui

where Ui = Xi for i 6= i1, i 6= i2, and Ui1 = V1, Ui2 = V2.
If we carry out a similar argument for the finite intersections that make up B, we find that

each B ∈ B can be expressed as

B =
n⋂

r=1

(πir)
−1(Ur)

where n ≥ 0, i1, i2, . . . , in ∈ I are all different, Ur ⊂ Xir open. We can then write

B =
∏
i∈I

Ui

where Ui = Xi for each i ∈ I \ {i1, i2, . . . , in} (all but finitely many i ∈ I) and Uir = Ur for
1 ≤ r ≤ n.

You could be tempted to define a base for a topology on the cartesian product X by taking
all subsets of X of the form

∏
i∈I Ui where Ui ⊂ Xi open ∀i ∈ I , but this is a very different

topology if I is infinite. Most of the nice properties that we will encounter about the product
topology (such as Tychonoff’s theorem on compactness of product spaces) would not be true if
we used this more naive definition. The fact that the product topology is the weakest one making
all πi continuous is meant as a justification for the ‘correct’ (or standard) definition of the product
topology.

Finally, a few other basic properties of the product topology.

Theorem 1.5.13. Consider a family (Xi,Ti) of topological spaces indexed by i ∈ I . Let X =∏
i∈I Xi be the cartesian product set taken with the product topology, and πi : X → Xi the

coordinate projections (i ∈ I).

(i) If Z is another topological space and f : Z → X is a function, then f is continuous if and
only if πi ◦ f : Z → Xi is continuous for each i ∈ I .

[You could perhaps phrase this as saying that a function with values in a product space is
continuous if and only if each of its coordinate functions is continuous.]

(ii) If (xn)∞n=1 is a sequence in X and x0 ∈ X , then xn → x0 as n → ∞ if and only if
πi(xn)→ πi(x0) for each i ∈ I .

[You could perhaps phrase this as saying that a sequence in a product space converges if
and only if it converges coordinate by coordinate.]

Proof. (i) If f is continuous, then so is the composition πi ◦ f .

On the other hand, if πi ◦ f is continuous (∀i ∈ I), then for Ui ⊂ Xi open we have
(πi ◦ f)−1(Ui) = f−1((πi)

−1(Ui)) open in Z. As every basic open set for the product
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topology is a finite intersection B =
⋂n

r=1(πir)
−1(Ur) (with n ≥ 0, i1, i2, . . . , in ∈ I ,

Ur ∈ Xir open), we conclude

f−1(B) =
n⋂

r=1

f−1((πir)
−1(Ur))

is open in Z (as a finite intersection of open sets). By Proposition 1.4.13 (b), f is continu-
ous.

(ii) If xn → x0, consider and open set Uj ⊂ Xj with πj(x0) ∈ Uj . Since πi is continuous (by
the definition of the product topology), U = π−1j (Uj) is open in the product topology, and
x0 ∈ U . Since we know xn → x0, we know we can find n0 ∈ N so that

xn ∈ U = π−1j (Uj)∀n ≥ n0.

We deduce
πj(xn) ∈ Uj∀n ≥ n0.

This verifies πj(xn)→ πj(x0) as n→∞.

Conversely, assume πi(xn) → πi(x0) as n → ∞ holds for each i ∈ I . Let U be open (in
the product topology) with x0 ∈ U . Take a basic open set B =

⋂n
r=1(πir)

−1(Ur) (with
n ≥ 0, i1, i2, . . . , in ∈ I , Ur ∈ Xir open) with x0 ∈ B ⊆ U . Then πir(x0) ∈ Ur. Since
πir(xn) → πir(x0) by assumption, there is nr ∈ N so that πir(xn) ∈ Ur∀n ≥ nr. Put
n0 = max1≤r≤n nr. Then

n ≥ n0 ⇒ xn ∈ B =
n⋂

r=1

(πir)
−1(Ur) ⊆ U.

We have shown xn → x0 as n→∞.

1.6 Neighbourhood bases

In the proof of Theorem 1.4.10 we used the notion of distance in an essential way. Our next
definition is designed to capture as much of the notion of ‘close’ as we can do in an arbitrary
topological space. It is a useful notion, but perhaps we will see that it is limited as a substitute
for what we can do in a metric space.

Definition 1.6.1. If X is a topological space, and x0 ∈ X is a point, then a subset N ⊆ X is
called a neighbourhood of the point x0 if x0 belongs to the interior of N .

We sometimes use the notation Ux0 of the collection of all neighbourhoods of x0. The term
neighbourhood system at x0 is sometimes used to describe Ux0 .
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Remarks 1.6.2. We can see then that every superset of a neighbourhood of a point is again a
neighbourhood of the same point. This means that neighbourhoods can be very irregular. For
example, in the plane R2, neighbourhoods of the origin (0, 0) include balls B((0, 0), r) for r > 0
and also closed balls B̄((0, 0), r) or any set that contains some open ball about (0, 0). The
positive x-axis union the ball (disc) of radius 1/4 is an example of a neighbourhood. Possibly it
is far-fetched to think that these points are all ‘close’ to (0, 0) in any reasonable sense.

In a topological space, we have no measure of closeness to a point x0 and we take neighbour-
hoods as a substitute (no matter how strange the notation may be, it is quite useful).

An open set containing x0 is always a neighbourhood of x0. Thus every point has at least one
neighbourhood — the whole space. In some cases, this can be the only neighbourhood of x0.

The intersection N1∩N2 of any two neighbourhoods of x0 is again a neighbourhood because
N◦1 ∩N◦2 = (N1 ∩N2)

◦. So x0 ∈ (N1 ∩N2)
◦ if x0 ∈ N◦1 and x0 ∈ N◦2 .

Next we look at a concept that tries to cut down on the complication involved in thinking
about all possible neighbourhoods of a point x0.

Definition 1.6.3. If X is a topological space, and x0 ∈ X is a point, then a neighbourhood base
at x0 is a subset Bx0 ⊂ Ux0 of the entire neighbourhood system Ux0 with the property

N ∈ Ux0 ⇒ ∃B ∈ Bx0 with B ⊆ N

Examples 1.6.4. (i) In a metric space (X, d), for any point x0 ∈ X

Bx0 = {B(x0, r) : r > 0}

(all the open balls centred at x0) is a neighbourhood base at x0.

If N ∈ Ux0 , then x0 ∈ N◦ and so there is r > 0 with B(x, r) ⊆ N◦ ⊆ N . Thus every
neighbourhood contains an open ball centred at x0. We also need to know that these balls
are themselves neighbourhoods (which we do know).

(ii) So also is
{B(x0, 1/n) : n ∈ N}

(balls of radius 1/n).

(iii) In any topological space {U : U open, x0 ∈ U} (all open sets containing x0) is a neigh-
bourhood base at x0.

Definition 1.6.5. A topological space (X,T ) is called first countable at a point x0 ∈ X if there
is a countable neighbourhood base at x0.

We say the topological space is first countable if it is first countable at each of its points.

Proposition 1.6.6. (i) Second countable topological spaces are always first countable.

(ii) All metric spaces are first countable.
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Proof. (i) If X is a second countable topological space, that means that there is a countable
base B for the open sets of X . For a fixed x0 ∈ X , take Bx0 = {B ∈ B : x0 ∈ B}.
Clearly Bx0 (a subset of a countable set) must be countable. It is a neighbourhood base as,
first it consists of neighbourhoods (open neighbourhoods) of x0, and if N is any neighbour-
hood of x0 then x0 ∈ N◦ (open)⇒ ∃B ∈ B (base for the open sets) with xo ∈ B ⊆ N◦ ⇒
B ∈ Bx0 and B ⊆ N .

(ii) We’ve seen that Bx0 = {B(x0, 1/n) : n ∈ N} is a neighbourhood base at any point x0 of a
metric space X . It is a countable neighbourhood base at x0.

Remark 1.6.7. It is tempting to wonder if the proof of Theorem 1.4.10 could be adapted to show
that first countable and separable topological spaces have to be second countable, but it cannot.
We can check that the Sorgenfrey line is first countable and separable but not second countable.

To see that the Sorgenfrey line is first countable, fix x ∈ R and note that Bx = {[x, x+1/n) :
n ∈ N} is a countable neighbourhood base at x. (To check that start with a neighbourhood N .
Then x is in the interior N◦ and so there exist a < b with x ∈ [a, b) ⊆ N◦. As x < b there is
n ∈ N with 1/n < b− x. So x ∈ [x, x+ 1/n) ⊆ [a, b) ⊆ N◦ ⊆ N .

Although in this respect we cannot succeed, there are several cases where first countability is
a simplifying assumption. Mostly it allows us to describe things via convergence of sequences.

Recall Definition 1.3.5 about convergence of sequences in a topological space.

Proposition 1.6.8. (i) If (xn)∞n=1 a sequence in a topological space, (X,T ), x0 ∈ X and Bx0

a neighbourhood base at x0. Then xn → x0 as n → ∞ ⇐⇒ whenever B ∈ Bx0 there
exists n0 ∈ N with the property that

xn ∈ B∀n ≥ n0.

(ii) If (xn)∞n=1 is a sequence in a metric space (X, d) and x0 ∈ X , then xn → x0 as n → ∞
⇐⇒ the following ε− n0 condition holds:

for each ε > 0 there is n0 ∈ N such that

d(xn, x0) < ε∀n ≥ n0

Proof. (i) The⇒ direction is clear since basic neighbourhoods are neighbourhoods.

For⇐, assuming the condition about basic neighbourhoods, let N ∈ Ux0 . Then there is a
B ∈ Bx0 with B ⊆ N (by the definition of a neighbourhood base). By the condition we are
assuming there is n0 ∈ N so that n ≥ n0 ⇒ xn ∈ B ⇒ xn ∈ N . So xn ∈ N∀n ≥ n0.

(ii) To deduce this from the previous part consider the neighbourhood base

Bx0 = {B(x0, ε) : ε > 0}

and observe that
xn ∈ B(x0, ε) ⇐⇒ d(xn, x0) < ε.
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The second statement above is just saying that Definitions 1.3.1 and 1.3.5 agree for metric
spaces, which we already stated in Lemma 1.3.6.

Proposition 1.6.9. Let (X,T ) be a topological space and let x ∈ X be a point, Ux the neigh-
bourhoods of x. Then N1, N2 ∈ Ux ⇒ N1 ∩N2 ∈ Ux.

[In words, the intersection of any two neighbourhoods of x is again a neighbourhood of x.]

Proof. If N1, N2 ∈ Ux, then we have x ∈ N◦1 and x ∈ N◦2 . Since N◦1 ∩N◦2 is open [intersection
of two open sets] and x ∈ N◦1 ∩N◦2 ⊆ N1 ∩N2 we have x ∈ (N1 ∩N2)

◦, so that N1 ∩N2 ∈ Ux.
[We could perhaps shorten the proof by using the fact noted in Remarks 1.1.24 that (N1 ∩

N2)
◦ = N◦1 ∩N2.]

Examples 1.6.10. (i) Let X be an infinite set with the ‘co-finite’ topology. This means that the
open sets are ∅ and subsets U ⊂ X where X \ U is finite. [It is not difficult to verify that
this is a topology.]

If (xn)∞n=1 is a sequence in X where all the terms are distinct (xn 6= xm if n 6= m), then
(xn)∞n=1 has every point x0 ∈ X as a limit. (Exercise).

(ii) Let X be an uncountable set with the with the ‘co-countable’ topology. This means that the
open sets are ∅ and subsets U ⊂ X where X \ U is countable. [It is not difficult to verify
that this is a topology.]

If (xn)∞n=1 is a sequence in X and xn → x0 as n → ∞ (for some x0 ∈ X), then there is
n0 ∈ N so that xn = x0∀n ≥ n0. Thus the sequence is eventually constant equal to its
limit (and so the only convergent sequences are constant apart from some finite number of
terms).

One way to think about this example is that very few sequences converge (and only to
one limit). By contrast, in the previous example many sequences converged to very many
limits.

We can characterise closures in some useful ways, and in a first countable space we can do it
with limits of sequences.

Proposition 1.6.11. Let (X,T ) be a topological space and S ⊆ X . Let x0 ∈ X . Then the
following are equivalent statements:

(a) x0 ∈ S̄ (the closure of S);

(b) every open subset U ∈ T with x0 ∈ U has U ∩ S 6= ∅;

(c) every neighbourhood N ∈ Ux0 has N ∩ S 6= ∅;

(d) for some fixed neighbourhood base Bx0 at x0, we have B ∩ S 6= ∅∀B ∈ Bx0 .

(e) X \ S /∈ Ux0

If X is assumed to be first countable, these are equivalent to
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there exists a sequence (sn)∞n=1 with sn ∈ S∀n ∈ N so that sn → x0 (in X) as
n→∞.

Proof. (a)⇒ (b): If, on the contrary U ∩ S = ∅ for some U ∈ T with x0 ∈ U , then x0 ∈ U ⊂
X \ S. Hence x0 ∈ (X \ S)◦ = X \ S̄ and x0 /∈ S̄ — contradiction..

(b)⇒ (c): We have x0 ∈ N◦ open. Hence N◦ ∩ S 6= ∅ and so N ∩ S 6= ∅ (as N◦ ⊆ N ).
(c)⇒ (d): This is clear as basic neighbourhoods are neighbourhoods.
(d)⇒ (e): If X \ S is a neighbourhood of x0, then it contains some basic neighbourhood B.

But B ∩ S 6= ∅ by assumption. So ∅ = (X \ S) ∩ S ⊇ B ∩ S 6= ∅— a contradiction.
(e) ⇒ (a): To show x0 ∈ S̄, assume not. Then x0 ∈ X \ S̄ = an open set, and X \ S̄ =

(X \ S)◦ ⊆ X \ S. So X \ S is a neighbourhood of x0, contradicting our assumption that (e)
holds.

Finally, we show the equivalence of the sequence condition. First countability is needed in
one direction only.

If there exists a sequence (sn)∞n=1 in S converging to x0, we must have x0 ∈ S̄. If not, N =
X \ S is a neighbourhood of x0, that is x0 ∈ N◦ and so there is n0 ∈ N with sn ∈ N◦∀n ≥ n0.
But taking n = n0 gives a contradiction sn = sn0 ∈ S ∩N◦ ⊆ S ∩N = S ∩ (X \ S) = ∅.

Take now X first countable and x0 ∈ S̄. We need to find a sequence in S that converges
to S. Take a countable neighbourhood base Bx0 = {B1, B2, B3, . . .} at x0. (In the eventuality
that the base is actually finite, just keep repeating the last member to get a seemingly infinite
neighbourhood base.) Pick s1 ∈ S ∩B1, s2 ∈ S ∩B1 ∩B2 (possible since B1 ∩B2 ∈ Ux0), and
so on. In general pick sn ∈ S ∩

⋂n
j=1Bj . Clearly (sn)∞n=1 is now a sequence in S and we have to

check it converges to x0.
Take any open U ⊆ X with x0 ∈ U . Then U ∈ Ux0 and there is some basic neighbourhood

Bn0 ∈ Bx0 with Bn0 ⊆ U . Observe now that n ≥ n0 ⇒ sn ∈ Bn0 ⇒ sn ∈ U . Thus we have n0

so that sn ∈ U∀n ≥ n0. This establishes sn → x0 as n→∞.

Next we consider continuity of functions between topological spaces. Previously, in Defini-
tion 1.2.1, we defined continuity at a point and globally in the context of metric spaces. See also
Proposition 1.3.3 (continuity via sequences). In Definition 1.2.6 we defined continuity on the
whole space only (or global continuity) of functions on topological spaces.

We will now look into continuity a bit more fully in the context of topological spaces.

Definition 1.6.12. Let f : X → Y be a function between topological spaces X and Y . (We
could say that T X is the topology of X and T Y the topology of Y , but we can get by without
this notation.) Let x0 ∈ X and y0 = f(x0) ∈ Y .

By UX
x0

we mean the neighbourhood system of x0 in X and by UY
y0

we mean the neighbour-
hood system of y0 in Y .

We say that f is continuous at the point x0 ∈ X if f satisfies

NY ∈ UY
f(x0)

⇒ f−1(NY ) ∈ UX
x0
.

Proposition 1.6.13. Let f : X → Y be a function between topological spaces X and Y and
fix x0 ∈ X . Let BX

x0
be a neighbourhood base at x0 ∈ X and BY

f(x0)
a neighbourhood base at

f(x0) ∈ Y . Then the following are equivalent conditions:
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(a) f is continuous at x0;

(b) ∀BY ∈ BY
f(x0)

we have f−1(BY ) ∈ UX
x0

;

(c) ∀BY ∈ BY
f(x0)

there exists BX ∈ BX
x0

with f(BX) ⊆ BY

If X is first countable, then these are also equivalent to the sequence criterion:

whenever (xn)∞n=1 is a sequence in X with xn → x0 as n → ∞, we have f(xn) →
f(x0) as n→∞.

Proof. (a)⇒ (b): This is clear since BY
f(x0)

⊆ UY
f(x0)

.
(b) ⇒ (c): This is clear since f−1(BY ) ∈ UY

f(x0)
implies there is BX ∈ BX

x0
with BX ⊆

f−1(BY ). This in turn can be restated f(BX) ⊆ BY .
(c)⇒ (a): Let NY ∈ UY

f(x0)
. Then there is BY ∈ BY

f(x0)
with BY ⊆ NY . By the assumption

(c), there is BX ∈ BX
x0

with f(BX) ⊆ BY . Hence BX ⊆ f−1(BY ) ⊆ f−1(NY ), from which we
conclude f−1(NY ) ∈ UX

x0
.

This shows the equivalence of the 3 conditions.
Continuity at x0 implies the sequence condition always. If f is continuous at x0 and xn → x0,

to show f(xn) → f(x0), take any U ⊆ Y open with f(x0) ∈ U . Then U ∈ UY
f(x0)

. Thus
NX = f−1(U) ∈ UX

x0
. Since we know xn → x0, we conclude we can find n0 ∈ N so that

xn ∈ (NX)◦ ⊆ NX∀n ≥ n0.

We deduce
f(xn) ∈ f(NX) ⊆ U∀n ≥ n0.

So there is n0 ∈ N satisfying f(xn) ∈ U∀n ≥ n0. This verifies f(xn) → f(x0) as n → ∞. As
this is true of every possible sequence (xn)∞n=1 in X converging to x0, we have established that
continuity implies the sequence criterion.

For the last implication, assume we are in a first countable space and that f satisfies the
sequence criterion at x0. Then there is a countable neighbourhood base BX

x0
= {B1, B2, . . .} at

x0 ∈ X .
To show continuity at x0, select a neighbourhood NY ∈ UY

f(x0)
. Let V = f−1(NY ) and our

claim is that V contains B′n =
⋂n

j=1Bj for some n. If not, then for each n, there is xn ∈ B′n with
xn /∈ V . This means that f(xn) /∈ NY ∀n.

We can verify that xn → x0 (see the end of the proof of Proposition 1.6.11). We do not
have f(xn) → f(x0) because it is not possible to find n0 ∈ N with f(xn) ∈ NY ∀n ≥ n0.
(Note f(xn0) /∈ NY to see there is no such n0.) As NY is a neighbourhood of f(x0) this
shows f(xn) → f(x0) fails. So we have a sequence contradicting the sequence criterion we are
assuming to hold.

We conclude from this that ∃n with B′n ⊆ V . As B′n ∈ UX
x0

we have f−1(NY ) = V ∈ UX
x0

.
This establishes continuity of f at x0.
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Remark 1.6.14. Note that in the case where X and Y are metric spaces, we can take BX
x0

=
{B(x0, δ) : δ > 0} and BY

f(x0)
= {B(f(x0), ε) : ε > 0} and then the condition (c) above is

equivalent to

∀ε > 0 there exists δ > 0 so that dX(x, x0) < δ ⇒ dY (f(x), f(x0)) < ε

See Definition 1.2.1.
Another remark is that first countability came into the proof when we needed to produce a

sequence.

Proposition 1.6.15. Let f : X → Y be a function between topological spaces X and Y . Then f
is continuous (in the sense of definition 1.2.6) if and only if it is continuous at each point x0 ∈ X .

Proof. Suppose f is continuous (in the sense that V ⊂ Y open in Y implies f−1(V ) ⊂ X open
in X). Let x0 ∈ X be a point and NY a neighbourhood of f(x0) in Y . So V = (NY )◦ is open
in Y and f(x0) ∈ V . Thus x0 ∈ f−1(V ) ⊂ f−1(NY ) and f−1(V ) is open (in X). Thus x0
is an interior point of f−1(NY ), so that f−1(NY ) is a neighbourhood of x0. This shows f is
continuous at x0 (for each x0 ∈ X).

Conversely, suppose f is continuous at each point x0 ∈ X . Let V ⊂ Y be open in Y . To
show f−1(V ) ⊂ X open in X , consider any point x0 ∈ f−1(V ). Then f(x0) ∈ V and V is a
neighbourhood of f(x0) (open neighbourhood in fact). So by continuity of f at x0, f−1(V ) is a
neighbourhood of x0. So x0 is an interior point of f−1(V ). As this is true of each x0 ∈ f−1(V ),
we see that f−1(V ) is open.

Example 1.6.16. Let X0 and X1 be two disjoint uncountable sets and let X = X0 ∪ X1 with
the co-countable topology. Consider the function f : X → R with f(x) = 0 for x ∈ X0 and
f(x) = 1 for x ∈ X1.

Now f is not continuous because f−1((−1/2, 1/2)) = X0 is not open in X (X \X0 = X1 is
not countable).

However, f does satisfy the sequence criterion for continuity at each x0 ∈ X because xn →
x0 in X implies there is n0 ∈ N so that xn = x0∀n ≥ n0. (See Examples 1.6.10 (ii).) Thus
f(xn)→ f(x0).

We conclude that sequences do not describe continuity in general topological spaces.
Neither do they describe closures because we can take S = X0 in the same space X . Then

the closure of S is the whole of X . (Reason: the only closed sets in X are the whole space X
and countable sets. As S is uncountable, the only closed set that contains S is X .) But there are
no sequences in S that converge to points of X \ S.

Remark 1.6.17. There is a (standard or well-known) idea of a net, a kind of generalisation of the
notion of a sequence which addresses the issues raised above (and some more).

Oct 28/2016: Fixed typo in Theorem 1.5.4.
May 4, 2017: Fixed typo in Theorem 1.4.11.

Richard M. Timoney (May 4, 2017)
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