MA2224 (Lebesgue integral) Tutorial sheet 7 [March 26, 2018]

Name: Solution

1. Use the Monotone Convergence Theorem to show that if $f \colon \mathbb{R} \to [0,\infty]$ is measurable, then

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{[-n,n]} f \, d\mu$$

Solution: We know (by definition) that

$$\int_{[-n,n]} f \, d\mu = \int_{\mathbb{R}} f \chi_{[-n,n]} \, d\mu$$

If we take $f_n = f\chi_{[-n,n]}$ we find that f_n is measurable (product of two measurable fuctions), nonnegative (since $f \ge 0$ by assumption and $\chi_{[-n,n]} \ge 0$ because $\chi_{[-n,n]}$ has only the values 1 and 0) and $f_n \le f_{n+1}$ always (because $\chi_{[-n,n]} \le \chi_{[-n-1,n+1]}$ and $f \ge 0$). Finally $\lim_{n\to\infty} f_n(x) = f(x)$ because $f_n(x) = f(x)$ once $n \ge |x|$ (when $\chi_{[-n,n]}(x) = 1$). The Monotone Convergence Theorem says (under these circumstances) that

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu = \lim_{n \to \infty} \int_{[-n,n]} f \, d\mu$$

2. Using the previous question, find $\int_{\mathbb{R}} f d\mu$ for

$$f = \sum_{k=1}^{\infty} \frac{1}{2^k} \chi_{[k,k+1)}$$

Solution: We can work out that

$$f\chi_{[-n,n]} = \sum_{k=1}^{\infty} \frac{1}{2^k} \chi_{[k,k+1)}\chi_{[-n,n]} = \sum_{k=1}^{\infty} \frac{1}{2^k} \chi_{[k,k+1)\cap[-n,n]} = \sum_{k=1}^{n-1} \frac{1}{2^k} \chi_{[k,k+1)} + \frac{1}{2^n} \chi_{\{n\}}$$

That is a simple function with integral

$$\int_{\mathbb{R}} f\chi_{[-n,n]} d\mu = \sum_{k=1}^{n-1} \frac{1}{2^k} \mu([k,k+1)) + \frac{1}{2^n} \mu(\{n\}) = \sum_{k=1}^{n-1} \frac{1}{2^k} + 0$$

Using the previous question, we have

$$\int_{\mathbb{R}} f \, d\mu = \sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1/2}{1 - 1/2} = 1$$

(because it is a geometric series with ratio $\frac{1}{2}$ and |1/2| < 1).

3. Let $f_n = \chi_{[n,2n]}$. Show that $\lim_{n\to\infty} f_n(x) = 0$ for each $x \in \mathbb{R}$ but

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu \neq 0 = \int_{\mathbb{R}} 0 \, d\mu = \int_{\mathbb{R}} \lim_{n \to \infty} f_n(x) \, d\mu(x).$$

Solution: If $x \in \mathbb{R}$ is fixed, then for n large enough x < n and so $f_n(x) = \chi_{[n,2n]}(x) = 0$. Thus $\lim_{n\to\infty} f_n(x) = 0$.

We have

$$\int_{\mathbb{R}} f_n \, d\mu = \mu([n, 2n]) = 2n - n = n \not\to 0$$

as $n \to \infty$.

4. Why does the previous question not conflict with the Monotone Convergence Theorem?

Solution: The reason it does not is the we do not have monononicity of the sequence of functions.

For instance $f_1 \leq f_2$ fails because $f_1(1) = 1 > 0 = f_2(1)$ and in general $f_n(n) = 1 > 0 = f_{n+1}(n)$.

So we do **not have** $f_1 \le f_2 \le f_3 \le \cdots$ (and moreover we do not start to have it eventually — that is, even if we left off a finite number of functions f_1, f_2, \ldots, f_N from the sequence).

Richard M. Timoney