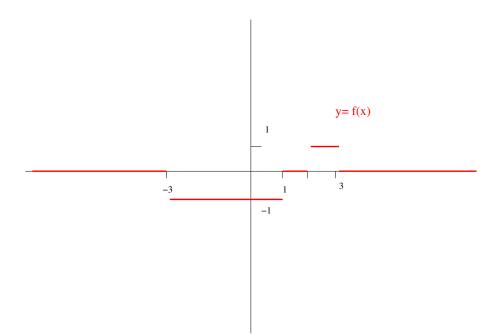
MA2224 (Lebesgue integral) Tutorial/excercise sheet 6 [issued March 16, 2018]

Name: Solutions

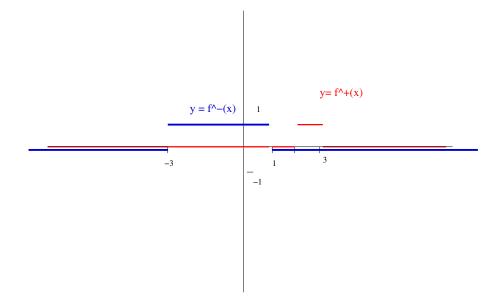

1. Define the sets

$$E_1 = [1,3), \quad E_2 = (-3,2)$$

(subsets of \mathbb{R}). Graph the simple function

$$y = f(x) = \chi_{E_1}(x) - \chi_{E_2}(x)$$

Solution:



and write it in its standard form (as a simple function). Solution: The standard form is $f = (-1)\chi_{(-3,1)} + 1\chi_{[2,3)} + 0\chi_{(-\infty,-3]\cup[1,2]\cup(3,\infty)}$

2. Then, for the same f as in Q1, compute the functions f^+ and f^- (in their standard forms) and graph them.

Solution: Recall $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$. So

$$f^+ = \chi_{[2,3)} = 1\chi_{[2,3)} + 0\chi_{\mathbb{R}\setminus[2,3)}, f^- = \chi_{(-3,1)} = 1\chi_{(-3,1)} + 0\chi_{\mathbb{R}\setminus(-3,1)},$$

 Use the definition of the Lebesgue integral for nonnegative simple functions to compute ∫_ℝ f⁺ dµ and ∫_[2,3] f⁺ dµ. (For the same f again. And apply the definitions directly.)
Solution: Using the standard form for f⁺,

$$\int_{\mathbb{R}} f^+ d\mu = 1\mu([2,3)) + 0\mu(\mathbb{R} \setminus [2,3)) = \mu([2,3) = 1.$$

By definition $\int_{[2,3]} f^+ d\mu = \int_{\mathbb{R}} \chi_{[2,3]} f^+ d\mu$ and the standard form for $\chi_{[2,3]} f^+$ is $\chi_{[2,3]} f^+ = \chi_{[2,3]} = 1\chi_{[2,3]} + 0\chi_{\mathbb{R}\setminus[2,3]}$. So

$$\int_{[2,3]} f^+ d\mu = \int_{\mathbb{R}} \chi_{[2,3]} f^+ d\mu = 1\mu([2,3)) + 0\mu(\mathbb{R} \setminus [2,3)) = \mu([2,3)) = 1.$$

Richard M. Timoney