MA2224 (Lebesgue integral) Tutorial sheet 5 [March 12, 2018]

Name: Solutions

1. Verify directly that constant functions $f \colon \mathbb{R} \to (-\infty, \infty)$ are Lebesgue measurable.

Solution: Let $c \in (-\infty, \infty)$ be the constant value so that $f \colon \mathbb{R} \to (-\infty, \infty)$ is given by f(x) = c for each $x \in \mathbb{R}$.

For $a \in \mathbb{R}$ we then have

$$f^{-1}((-\infty, a]) = \{ x \in \mathbb{R} : f(x) \le a \} = \begin{cases} \emptyset & \text{ if } a < c \\ \mathbb{R} & \text{ if } c \le a \end{cases}$$

Since we certainly have \emptyset , $\mathbb{R} \in \mathscr{L}$, we do have $f^{-1}((-\infty, a]) \in \mathscr{L}$ for each $a \in \mathbb{R}$ — that is we have f Lebesgue measurable.

If f: R → R is Lebesgue measurable and g: R → R is continuous, show that g ∘ f is Lebesgue measurable. [Hint: If E ⊆ R is closed then g⁻¹(E) is a closed set, hence a Borel set. Also (g ∘ f)⁻¹(E) = f⁻¹(g⁻¹(E)). What do we know about f⁻¹(B) for B Borel?]

Solution: The aim is to show that for each $a \in \mathbb{R}$ we have $(g \circ f)^{-1}((-\infty, a]) \in \mathscr{L}$.

Taking $E = (-\infty, a]$ in the hint, we have

$$(g \circ f)^{-1}((-\infty, a]) = f^{-1}(g^{-1}((-\infty, a]))$$

Since g is continuous and $(-\infty, a] \subset \mathbb{R}$ is closed, we know that $g^{-1}((-\infty, a])$ is closed and hence Borel. (Recall that one way to characterise the Borel σ -algebra is that it is the σ -algebra generated by the closed sets.)

Recall now the result that if f is Lebesgue measurable then $f^{-1}(B) \in \mathscr{L}$ holds for each Borel set B. So (taking $B = g^{-1}((-\infty, a])$)

$$(g \circ f)^{-1}((-\infty, a]) = f^{-1}(g^{-1}((-\infty, a])) \in \mathscr{L}$$

This is true for each $a \in \mathbb{R}$ and so f is Lebesgue measurable.

3. If $f: [0,1] \to \mathbb{R}$ is Lebesgue measurable on [0,1] and $g(x) = e^{f(x)}/(1+f(x)^2) - 1$, show that g is Lebesgue measurable on [0,1].

Solution: We defined (Lebesgue) measurability of functions defined on measurable subsets of \mathbb{R} by extending the domain to \mathbb{R} and giving the extension the value 0 on the complement. So, since f is measurable on [0, 1] it follows that the extension $F \colon \mathbb{R} \to \mathbb{R}$ given by

$$F(x) = \begin{cases} f(x) & \text{if } x \in [0,1] \\ 0 & \text{for } x \notin [0.1] \end{cases}$$

is measurable on \mathbb{R} .

Consider now the continuous function $h \colon \mathbb{R} \to \mathbb{R}$ given by

$$h(y) = \frac{e^y}{1+y^2} - 1$$

We have that g(x) = h(f(x)) for $x \in [0, 1]$.

Because h(0) = 0 we have that the extension of g to \mathbb{R} given by

$$G(x) = \begin{cases} g(x) & \text{ if } x \in [0, 1] \\ 0 & \text{ for } x \notin [0.1] \end{cases}$$

is actually the same as $G = h \circ F$.

By the previous question G is measurable on \mathbb{R} and so that means (by our definitions) that g is measurable on [0, 1], as required.

Some notes.

(i) One could mimic the previous question and prove that for functions f: X → ℝ defined on domains that are measurable subsets X ⊆ ℝ such that f is measurable on X and for continuous g: ℝ → ℝ, we do have g ∘ f measurable on X. What we would need for that is to show that if B ⊆ ℝ is Borel, then f⁻¹(B) ⊆ X is measurable. (That is a version of Proposition 3.2.4 of the notes.) Then the rest of the solution of Q2 would go through.

To do that we would consider $\Sigma_f = \{E \subseteq \mathbb{R} : f^{-1}(E) \in \mathscr{L}\}$ and show that Σ_f is a σ -algebra of subsets of \mathbb{R} (in the same way as we did for the case $X = \mathbb{R}$ in Proposition 3.2.4 — one small detail is that now $f^{-1}(E^c) = X \setminus f^{-1}(E) = X \cap (f^{-1}(E))^c$ is the complement in X rather than in \mathbb{R}).

(ii) A device to avoid repeating those arguments is to consider $g_1(x) = g(x) - g(0)$ so that $g_1(0) = 0$ and $(g \circ f)(x) = (g_1 \circ f)(x) + g(0)$. The point is that if F is the extension

$$F(x) = \begin{cases} f(x) & \text{if } x \in X \\ 0 & \text{for } x \notin X \end{cases}$$

to domain \mathbb{R} , then $g_1 \circ F$ is the similar extension of $g_1 \circ f$. By Q2 then we know that (since g_1 is certainly continuous) $g_1 \circ F$ is measurable on \mathbb{R} . Then $g_1 \circ f$ is measurable on X.

Finally $g \circ f = g_1 \circ f + g(0)$ is measurable as the sum of a measurable function $g_1 \circ f$ and a (measurable) constant function.

Richard M. Timoney