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Name: Solutions

1. Let F =
⋃∞

n=1(2n − (1/2n), 2n]. Explain why F ∈ L and compute m∗(F ) (based on
results we have established).

Solution: We know (2n− (1/2n), 2n] ∈J and J ⊆ L , so (2n− (1/2n), 2n] ∈ L (for
each n). We also know that L is a σ-algebra and so F ∈ L .

As m∗ is countably additive on L and the sets (2n− (1/2n), 2n] are disjoint,

m∗(F ) =
∞∑
n=1

m∗((2n− (1/2n), 2n]) =
∞∑
n=1

m((2n− (1/2n), 2n]) =
∞∑
n=1

1

2n
= 1

2. Show that Q ∈ L .

Solution: We know that Q is countable (countably infinite in fact) and so we can list its
elements Q = {q1, q2, . . .}. (If we like we can make sure there are no repetitions among
the qn.) So

Q =
∞⋃
n=1

{qn} =
∞⋃
n=1

[qnqn].

As each {qn} = [qnqn] ∈J ⊆ L and L is a σ-algebra, we have Q ∈ L .

[A slightly different approach is to use countable subadditivity of m∗ to say m∗(Q) ≤∑∞
n=1m

∗({qn}) =
∑∞

n=1m([qn, qn]) = 0 and then use the fact that sets of outer measure
zero are in L .]

[Both arguments can be adapted to show that every countable subset of R is a Lebesgue
measurable set — nothing really special about Q except that it is infinite and finite sets are
in J already.]

3. The ‘usual’ Cantor set (also called the middle thirds Cantor set) is constructed as an in-
tersection C =

⋂∞
n=1Cn where C1 = [0, 1/3] ∪ [2/3, 1] is obtained by removing the

open middle third (1/3, 2/3) from [0, 1]. Then each Cn+1 is obtained form Cn by re-
moving the open middle thirds from the (closed) intervals making up Cn. (For example
C2 = [0, 1/32] ∪ [2/32, 3/32] ∪ [6/32, 7/32] ∪ [8/32, 1].)

Show that Cn ∈ L for each n and that C ∈ L.

Calculate m∗(Cn) and m∗(C).

Solution: It is clear that Cn is a union of 2n closed intervals, so that Cn ∈J ⊆ L .

Since C ⊆ Cn for each n and m∗ is monotone, we have m∗(C) ≤ m∗(Cn) = m(Cn). But
we can see m(C1) = 1/3 + 1/3 = 2/3 and by induction that m(Cn+1) = (2/3)m(Cn)



so that m(Cn) = (2/3)n for each n ≥ 1. Thus m∗(C) ≤ (2/3)n for each n ≥ 1 and this
forces m∗(C) = 0 (by letting n→∞).

As L is a σ-algebra

C =
∞⋂
n=1

Cn =

(
∞⋃

m=1

Cc
n

)c

∈ L .

[Note that from m∗(C) = 0 we get another argument that C ∈ L , apart from the one
using De Morgan’s laws.]
Aside: One can show that C is an uncountable set. One way is to show that the elements
x ∈ C are exactly those that can be expressed in base 3 as

x =
∞∑
n=1

dn
3n

where each ‘digit’ dn ∈ {0, 2}. For instance 1/3 = 0/3 +
∑∞

n=2 2/3
n, and so we have to

use repeating 2’s sometimes.

There are uncountably many possible sequences d1, d2, . . . of zeros and twos, and this is a
way to show that C is uncountable.

So it is an uncountable set of measure zero (or total length zero) to add to countable exam-
ples like Q.
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