MA2224 (Lebesgue integral) Tutorial sheet 2 [February 9, 2015]

Name: Solutions

1. For $E = (-2,3] \cup (4,7] \cup (8,9] \cup (0,4]$ compute m(E) (where $m: \mathscr{J} \to [0,\infty]$ is length measure on the full interval algebra).

Solution: In standard form $E = (-2, 7] \cup (8, 9]$ and so m(E) = 7 - (-2) + 9 - 8 = 10.

2. Let \mathscr{J} be the (usual) full interval algebra (of subsets of \mathbb{R}) and define $\mu \colon \mathscr{J} \to [0,\infty]$ by

$$\mu(E) = \begin{cases} 0 & \text{if } m(E) < \infty \\ \infty & \text{if } m(E) = \infty \end{cases}$$

[Aside: This will not be a useful way to do things.]

Show that μ is finitely additive, monotone and finitely subadditive, but not countably additive or countably subadditive.

Solution: μ monotone: if $E_1, E_2 \in \mathscr{J}$ with $E_1 \subseteq E_2$, we consider the two cases $m(E_1) < \infty$ and $m(E_1) = \infty$ separately. If $m(E_1) < \infty$, then $\mu(E_1) = 0 \le \mu(E_2)$. If $m(E_1) = \infty$, then since m is monotone, $\infty = m(E_1) \le m(E_2)$ and so $m(E_2) = \infty$ also. Thus $\infty = \mu(E_1) \le \infty = \mu(E_2)$ holds in this case also.

 μ finitely additive: it is enough to show that if $E_1, E_2 \in \mathscr{J}$ are disjoint, then $\mu(E_1 \cup E_2) = \mu(E_1) + \mu(E_2)$. If $m(E_1 \cup E_2) < \infty$, then $m(E_1) \leq m(E_1 \cup E_2) < \infty$ and similarly $m(E_2) < \infty$. So $\mu(E_1 \cup E_2) = 0 = \mu(E_1) + \mu(E_2)$.

 μ finitely subadditive: it is enough to show that if $E_1, E_2 \in \mathscr{J}$, then $\mu(E_1 \cup E_2) \leq \mu(E_1) + \mu(E_2)$.

But by additivity and monotonicity (plus the fact that \mathcal{J} is an algebra)

$$\mu(E_1 \cup E_2) = \mu(E_1 \cup (E_2 \setminus E_1)) = \mu(E_1) + m(E_2 \setminus E_1) \le \mu(E_1) + \mu(E_2)$$

 μ not countably additive: If $E_n = [n, n+1)$, then $\bigcup_{n=1}^{\infty} E_n = [1, \infty) \in \mathcal{J}$ (and $E_n \in \mathcal{J}$ for each n. The sets E_n are pairwise disjoint and countable additivity of μ would imply

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n).$$

But $\mu(E_n) = 0$ for each n while

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu([1,\infty)) = \infty.$$

So countable additivity is false.

 μ not countably subadditive: The same example establishes that, as $\mu(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \mu(E_n)$ fails.

3. If A is an algebra of subsets of R and ν: A → [0,∞] is a countably subadditive function such that ν(Ø) = 0, show that it is finitely subadditive. [Recall: ν countably subadditive means that whenever E ∈ A and E₁, E₂, E₃,... is an infinite sequence of sets in A such that E ⊆ ⋃_{n=1}[∞] E_n, then ν(E) ≤ ∑_{n=1}[∞] ν(E_n). ν finitely subadditive means ν (⋃_{j=1}ⁿ E_j) ≤ ∑_{j=1}ⁿ ν(E_j) whenever E₁,..., E_n ∈ A.]

Solution: Starting with a finite list $E_1, \ldots, E_n \in \mathcal{A}$ we can extend it to an infinite list by taking $E_j = \emptyset$ for j > n.

Since \mathcal{A} is an algebra, $E = \bigcup_{j=1}^{n} E_j \in \mathcal{A}$ and since the extra sets are all empty $E = \bigcup_{j=1}^{\infty} E_j$. By countable subadditivity we get

$$\nu(E) \le \sum_{j=1}^{\infty} \nu(E_j) = \sum_{j=1}^{n} \nu(E_j)$$

since for j > n we have $\nu(E_j) = \nu(\emptyset) = 0$.

Richard M. Timoney