
Chapter 2. Length measure on R
The idea here is to develop the idea of the length of a subset of R in such a way that we can
manage to define the Lebesgue integral in more or less the way outlined in Chapter 0.

Ideally we should be able to talk about the length (total length) of any subset of the line, but
this turns out to be unworkable. Well, at least lots of things that seem obvious can’t work unless
we restrict ourselves to subsets of R that are not too terrible. We’ll explain later in precise terms
which kinds of sets are going to be allowed.

The approach we take is to start with lengths of intervals and then build up to more com-
plicated sets. If we wanted to cater for double integrals and triple integrals (and more generally
integrals of functions of n real variables) we should start with areas of rectangles in R2, or vol-
umes of boxes in R3, or n-dimensional volume of n-dimensional boxes in Rn, and build up from
there. We will not actually do these more general cases, but the approach we use on R can be
adapted fairly easily to work on Rn.
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2.1 Algebras of subsets of R
As we said, we can’t manage with lengths of all subsets of R, that is we will not be able to assign
a satisfactory length to each set in the power set P(R), the collection of all subsets. We do insist
that we have our length making sense for a (Boolean) algebra of subsets.

Definition 2.1.1. A collection A of subsets of R is called an algebra of subsets of R if

(a) ∅ ∈ A

(b) E ∈ A ⇒ Ec ∈ A

(c) E1, E2 ∈ A ⇒ E1 ∪ E2 ∈ A

(In words, A contains the empty set, is closed under taking complements and under unions (of
two members).)

Lemma 2.1.2. If A is an algebra of subsets of R, then

(i) R ∈ A

(ii) E1, E2 ∈ A ⇒ E1 ∩ E2 ∈ A

(iii) E1, E2, . . . , Ek ∈ A ⇒
⋃k

j=1 Ej ∈ A and
⋂k

j=1Ej ∈ A

Proof. (i) R = ∅c ∈ A by Definition 2.1.1 (a) and (b).
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(ii) E1, E2 ∈ A ⇒ E1 ∩ E2 = (Ec
1 ∪ Ec

2)c (by De Morgans laws)⇒ E1 ∩ E2 ∈ A (because
from Definition 2.1.1 (b) we have Ec

1, E
c
2 ∈ A, thus Ec

1 ∪ Ec
2 ∈ A by Definition 2.1.1 (c),

and so (Ec
1 ∪ Ec

2)c ∈ A by Definition 2.1.1 (b) again).

(iii) This follows by induction on k since
⋃k+1

j=1 Ej =
(⋃k

j=1 Ej

)
∪ Ek, and similarly for inter-

sections.

Remark 2.1.3. It might help us to know (from topology or the inermediate value theorem) that
the intervals in R are the nonempty connected subsets of the real line. (This fact will not adapt
if we were doing rectangles in R2 or boxes in Rn, however.) A less sophisticated concept that
could be used instead (but applies to subsets of the real line and is equivalent to connectedness)
is a between-ness property of a set S ⊆ R, stated as follows:

if s1, s2 ∈ S with s1 < s2 and x ∈ R with s1 < x < s2 then x ∈ S. (2.1.1)

There are quite a few kinds of intervals, finite ones with neither, one or both endpoints in-
cluded, so

(a, b) = {x ∈ R : a < x < b}, [a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}, [a, b] = {x ∈ R : a ≤ x ≤ b},

where we insist that a < b except in the case of [a, a] = {a} where we allow the singleton sets
as intervals. Then there are infinite ones that are not the whole line with the end point included
or nor and the whole line,

(a,∞) = {x ∈ R : a < x}, [a,∞) = {x ∈ R : a ≤ x},

(−∞, a) = {x ∈ R : x < a}, (−∞, a] = {x ∈ R : x ≤ a},

and finally the whole real line R = (−∞,∞).
In addition we can consider the empty set as an interval, though we will say that it has

no determined end points, putting it in a category by itself. Allowing ±∞ as kind of virtual
endpoints, all nonempty intervals have a left and a right endpoint (which is unambiguous).

Just for clarity, when we speak of finite intervals, we mean ones with finite endpoints and not
ones that are finite sets.

We can show the following.

Lemma 2.1.4. The subsets S ⊆ R with the between-ness property (2.1.1) are exactly all the
intervals (including the empty subset).

Proof. If S is bounded and not empty, one can take a = inf S, b = supS and use (2.1.1) to show
that (a, b) ⊆ S. In more detail if a < x < b, then x > inf S implies there is s1 ∈ S with s1 < x.
(So a ≤ s1 < b.) Similarly x < b = supS implies there is s2 ∈ S with x < s2 (and this s2 must
have s2 ≤ b). By (2.1.1) we get x ∈ S. This way we show (a, b) ⊆ S must hold. Then there are
4 cases to consider depending on a ∈ S or a /∈ S, and b ∈ S or b /∈ S.
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If, say, S is bounded below but not above we can do something similar to show (a,∞) ⊂ S
where a = inf S and then there are two cases depending on whether a ∈ S or not. If S is
bounded above but not below we take b = supS and show (−∞, b) ⊆ S and then we we have
two cases depending on whether or not b ∈ S.

If S is bounded neither above nor below we show R = (−∞,∞) ⊆ S ⇒ S = R. The last
case is S = ∅.

Lemma 2.1.5. If I1, I2 ⊆ R are intervals, then either I1 ∪ I2 is also an interval or there is t ∈ R
satisfying one of

(i) x < t for each x ∈ I1 and t < x for each x ∈ I2, or

(ii) x < t for each x ∈ I2 and t < x for each x ∈ I1.

A formal proof is possible based on the negation of the between-ness property (2.1.1). If
I1∪ I2 is not an interval, then there is an x that fails to satisfy (2.1.1) for S = I1∪ I2. Then argue
that we must have one of the cases stated.

If I1 = ∅ or I2 = ∅, then we have a collapsing case where I1 ∪ I2 is just one of the intervals
and we don’t need to do more. If not, then we can use (2.1.1) to show that I1 must be on one side
of x and I2 on the other.

A less formal (longer) argument would be to look at all the (many) possible casess of how
two nonempty intervals can be situated with respect to each other. If I1 and I2 actually overlap,
so that there is c ∈ I1 ∩ I2, it is fairly easy to see that I1 ∪ I2 must be an interval. Another case is
where there is a common endpoint between I1 and I2 and that endopoint is in one of the intervals.
An example is [0, 1) ∪ (1, 3) = [0, 3).

We won’t give the formal proof (or the longer one).

Definition 2.1.6. We define the (full) interval algebra J to be the collection of all finite unions
of intervals. We include the empty set in J (as the union of the empty collection of such
intervals!).1

Lemma 2.1.7. J is an algebra (of subsets of R).

Proof. This is almost obvious, but a formal check is perhaps a good idea. If we take the union
of two members of J , say of two finite unions E1 =

⋃n
j=1 Ij and E2 =

⋃m
k=1 I

′
k (where the Ij

and I ′k are intervals), then

E1 ∪ E2 =
n⋃

j=1

Ij ∪
m⋃
k=1

I ′k

is again a finite union of intervals and so E1 ∪ E2 ∈J .

1In previous versions of these notes, I used a smaller algebra that was denoted I and it only included finite
unions of some intervals, those where the right hand end point is included when it is finite and the left-hand end
point is not included. Starting with I , some things are easier to check right away but there is then a price to pay
later. In the end, it makes no big difference but this time we use the full interval algebra J .
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Considering the intersection E1 ∩ E2 (instead of the union) we have

E1 ∩ E2 =
n⋃

j=1

(Ij ∩ E2) =
n⋃

j=1

m⋃
k=1

(Ij ∩ I ′k)

and to see that E1 ∩ E2 ∈ J notice that each Ij ∩ I ′j is either empty or another interval. By
induction, we have then that finite intersections of sets in J will be in J .

The complement of one interval is either another interval or the union of two such, except in
the case of the whole line where we have Rc = (−∞,∞)c = ∅. For instance

(a, b)c = (−∞, a] ∪ [b,∞), (a, b]c = (−∞, a] ∪ (b,∞), [a, b)c = (−∞, a) ∪ [b,∞),

(for a < b),
[a, b]c = (−∞, a) ∪ (b,∞), (a ≤ b)

and

(−∞, a]c = (a,∞), (−∞, a)c = [a,∞), (a,∞)c = (−∞, a], [a,∞)c = (−∞, a),

The complement of the empty set is φc = R = (−∞,∞) = R. What we need is that if I is any
kind of interval, inclduing the case I = ∅, then Ic ∈J .

By De Morgans laws then, if E ∈J with E =
⋃n

j=1 Ij , we have

Ec =
n⋂

j=1

Icj

and we have just noted that each Icj ∈J . So Ec ∈J (using what we just showed about finite
intersections).

Remark 2.1.8 (Standard Form). One thing to note is that if two intervals overlap or share an
endpoint that belongs in one of the intervals, then their union is another interval. Or, more
precisely, we have Lemma 2.1.5.

By using induction on the smallest number of intervals required to express E, we can write
every set E = J uniquely as one of the following

E = ∅,

or there is n ≥ 1 so that E is a disjoint union of n ≥ 1 nonempty intervals

E = I1 ∪ I2 ∪ · · · ∪ In

in such a way that (if n > 1) there are points t1, . . . , tn−1 ∈ R such that x < tj holds for each
x ∈ Ij and tj < x holds for each x ∈ Ij+1 (for 1 ≤ j < n).

So we order the intervals left to right and the existence of the tj ensures that we cannot merge
any pair of consecutive intervals (or any pair at all) into a single interval.
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The idea for the induction would start with E as a union of (2 or more) nonempty intervals
and if any pair of the intervals has a union that is an interval, then we can reduce the number of
intervals we need by 1. Then we cn apply our induction hypothesis. So assume we cannot find
any pair of the intervals that merge into a single interval. Then by Lemma 2.1.5, we can order
each pair of the intervals left to right. In this way we can find a leftmost one. Then apply the
induction hypothesis in that case. If not there must be a leftmost interval and a gap betwen that
and the others.

We call this way of writing E ∈J the Standard Form of E.
We treat the standard form for E = ∅ to have n = 0 and it is just considered as the empty

union (of no intervals).

Example 2.1.9. To clarify, here are examples. Say E = (1, 4) ∪ (3, 6), then we can write it in a
simpler way as E = (1, 6).

If E = (1, 4) ∪ [4, 6) ∪ (−∞, 0), then we would write E = (−∞, 0) ∪ (1, 6).
We could say in this last example that there are two connected components of E. To make

the representation totally unique (and not just unique up to the order of writing down the union,
we are ordering them left to right).

It might help to think for youself of a few examples that are a little more involved.

Remark 2.1.10. We want to define a length function on subsets of R, certainly including the sets
in J for a start. But some of the intervals above have infinite length and so we are led to allow
∞ as a possible length.

That means we introduce an extended system of nonnegative numbers by adding an extra
symbol∞ to the usual [0,∞). We regard∞ as bigger than every ordinary x ∈ [0,∞), that is we
extend the definition of x1 < x2 for x1, x2 ≥ 0 to have x <∞ for all x ∈ [0,∞). Then we have
[0,∞] including∞.

We will also want to allow most arithmetic operations to be done where∞ is allowed. So we
will extend the definition of addition and multiplication of positive numbers so that

x+∞ =∞+ x =∞+∞ =∞ (0 ≤ x <∞),

x∞ =∞x =∞∞ =∞ (0 < x <∞),

0∞ =∞0 = 0

and sometimes we will have subtraction (mostly where we end up with a positive result) but we
will not define∞−∞.

So we will have∞− x =∞ for 0 ≤ x <∞.
We could go further and also introduce−∞ (smaller than all x ∈ R) and then get an extended

real line [−∞,∞], but we will not need that (until later).
Note that the rule 0∞ = ∞0 = 0 is not always good to allow, for instance in the case of

limits, but it will be appropriate in the ways that we will encounter it for integration.

Definition 2.1.11. We define a length function (or ‘measure’) m : J → [0,∞] by taking

m((a, b)) = m([a, b)) = m((a, b]) = m([a, b]) = b− a,
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m((−∞, a)) = m((−∞, a]) = m((a,∞)) = m([a,∞)) = m((−∞,∞)) =∞

and defining m(E) for general E ∈ I as the sum of the lengths of the intervals in the unique
representation mentioned above in Remark 2.1.8.

(For m(∅) we are defining m(∅) = 0, for example because we have n = 0 in the ‘Standard
Form’ (Remark 2.1.8) for that case and then the empty sup should be considered formally to
mean 0. Or just add m(∅) = 0 as one more rule. In the case of nonempty E it will have a
standard form E =

⋃n
j=1 Ij and we are defining m(E) =

∑n
j=1m(Ij).)

Example 2.1.12. Looking at one of the earlier examples E = (1, 4) ∪ (3, 6), we know E ∈J .
To compute m(E) from the definition we need E in its standard form E = (1, 6). Then we have
m(E) = 6− 1 = 5 (the usual total length of E).

If E = (1, 4) ∪ (3, 6) ∪ [−2,−1], the standard form would be E = [−2,−1] ∪ (1, 6) and
m(E) = (−1− (−2)) + (6− 1) = 1 + 5 = 6.

Terminology 2.1.13. We say that a function m : A → [0,∞] is finitely additive if whenever
E1, E2, . . . , En ∈ A are disjoint (that is Ej ∩ Ek = ∅ for j 6= k), then

m(E1 ∪ E2 ∪ · · · ∪ En) = m(E1) +m(E2) + · · ·+m(En).

By induction, to check finite additivity we only need to check it for n = 2.
We say that m is finitely subadditive if whenever E1, E2, . . . , En ∈ A, then

m(E1 ∪ E2 ∪ · · · ∪ En) ≤ m(E1) +m(E2) + · · ·+m(En).

Again the case n = 2 implies the general case.

Lemma 2.1.14. The length function m we have defined on J has the properties

(i) E1, E2 ∈ J , E1 ∩ E2 = ∅ ⇒ m(E1 ∪ E2) = m(E1) + m(E2) (which implies finite
additivity);

(ii) E1, E2 ∈J , E1 ⊆ E2 ⇒ m(E1) ≤ m(E2) (monotonicity);

(iii) m is finitely subadditive.

Proof. Most of this is quite easy, almost obvious perhaps, but maybe not so easy to organise into
a proper proof.

(i) It is sufficient to establish this in the case when E1 ∪ E2 is an interval. The reason is this.
We know E1 ∪ E2 ∈ J and so we can write it in its ‘standard form’ (Remark 2.1.8)
E1 ∪ E2 =

⋃n
j=1 Ij where the Ij are intervals ordered from left to right (and no pair of the

intervals overlaps and can only share an end point that is not included in either interval)
Since E1 ⊆ E1 ∪ E2, it must be that when we write E1 in the form we mentioned in
Remark 2.1.8, then the intervals used for E1 must all be contained in one of the intervals Ij .
So it is clear then thatm(E1) =

∑n
j=1 m(E1∩Ij) and similarlym(E2) =

∑n
j=1m(E2∩Ij).

Now Ij = (E1 ∩ Ij) ∪ (E2 ∩ Ij) (since Ij ⊆ E1 ∪ E2) and that justifies the simplification.
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Assuming then that E1 ∪ E2 = I is a single interval, the intervals that make up E1 and E2

must fit together to fill up I , with the intervals for E1 alternating with those for E2 (because
E1 ∩ E2 = ∅ and there must be gaps between the intervals mking up the standard form of
E1, also gaps between the intervals making up the standard form of E2). It is then pretty
obvious that the sum of the lengths of the intervals for E1 together with those of E2 must
be m(I). So m(I) = m(E1) +m(E2), or m(E1 ∪ E2) = m(E1) +m(E2).

As noted before, this implies finite additivity.

(ii) If E1 ⊆ E2, then E2 = E1 ∪ (E2 \ E1), a disjoint union, and so (by (i))

m(E2) = m(E1 ∪ (E2 \ E1)) = m(E1) +m(E2 \ E1) ≥ m(E1).

(iii) For E1, E2 ∈J , we get E1 ∪ E2 = E1 ∪ (E2 \ E1), a disjoint union and so

m(E1 ∪ E2) = m(E1 ∪ (E2 \ E1)) = m(E1) +m(E2 \ E1) ≤ m(E1) +m(E2)

using (i) and (ii). As noted before, this implies finite subadditivity.

Remark 2.1.15. Looking back at the example with y = sin(1/x) in §0.3 we already indicated
that we need to be able to deal with more than just lengths of finite unions of intervals. We need
to be able at least to deal with sets that are made up of countably many intervals, and the obvious
way to define their total length is to add up all the lengths.

This brings us to a more general kind of additivity, called ‘countable additivity’.
Before we get to that, notice that there is a nice thing about series

∑∞
n=1 tn of terms tn ∈

[0,∞]. If there is any term where tn0 = ∞, then
∑N

n=1 tn = ∞ whenever N ≥ n0 and so it
seems perfectly logical to say that

∑∞
n=1 tn = ∞. On the other hand, if tn < ∞ always then

the sequence of partial sums sN =
∑N

n=1 tn is a monotone increasing sequence. If the sequence
of partial sums is bounded above (by a finite number), then limN→∞ sN = supN≥1 sN and this
number is

∑∞
n=1 tn (in the ordinary sense). If the sequence of partial sums is not bounded above

by a finite quantity, we define
∑∞

n=1 tn =∞.
So every series

∑∞
n=1 tn of terms tn in [0,∞] has a sum.

Another good thing is that the sum remains the same if we change the order of the terms.
That follows from the fact that the sum is the supremum (in [0,∞]) of the partial sums.

Terminology 2.1.16. If A is an algebra and m : A → [0,∞], then we say that m is countably
additive if whenever E1, E2, E3, . . . is an infinite sequence of disjoint sets in A such that the
union

⋃∞
n=1 En ∈ A, then

m

(
∞⋃
n=1

En

)
=
∞∑
n=1

m(En).

What we want is to get to a situation where we consider only algebrasA that are closed under
taking countable unions, but the algebra J does not have that property. We will need one more
result about the length function we have defined on J .

Proposition 2.1.17. The length function on J is countably additive.
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Before embarking on the proof, here are two little facts that we will need:

Lemma 2.1.18. If I ⊆ R is a finite length nonempty interval (one with m(I) <∞) and ε > 0 is
arbitrary, then there is a finite closed interval [c, d] ⊆ I with d− c > m(I)− ε.

Proof. We could havem(I) = 0 in which case I = [a, a] for some a ∈ R (as we are not allowing
I = ∅). In that case take c = d = a.

Otherwise I has endpoints a < b (which are finite). Take a number δ > 0 so that 2δ < ε and
2δ < b− a. Then put c = a+ δ, d = b− δ.

Lemma 2.1.19. If I ⊆ R is a finite length interval (one with m(I) <∞) and ε > 0 is arbitrary,
then there is a finite open interval (e, f) ⊇ I with f − e < m(I) + ε.

Proof. In the case I = ∅ we can take δ = ε/3 and then e = −δ, f = δ.
Otherwise I has endpoints a < b (which are finite). Take δ = ε/3, e = a− δ, f = b+ δ.

Now for the proof of Proposition 2.1.17.

Proof. As in the proof of finite additivity, it is enough to consider the case where an interval
I ∈J is a countable union I =

⋃∞
n=1En of disjoint En ∈ I . Furthermore, we can write each

En =
⋃jn

j=1 In,j in its ‘standard form’ as a finite disjoint union of intervals (where m(En) =∑jn
j=1 m(In,j)) and so we can reduce to the case where I =

⋃∞
n=1 In is a disjoint union of

intervals In. [To spell it out more, the idea is that E = E1 ∪ E2 ∪ · · · = I1,1 ∪ I1,2 ∪ · · · I1,n1 ∪
I2,1 ∪ · · · ∪ I2,n2 ∪ I3,1 ∪ · · · and we number all these intervals as I1, I2, . . ..]

Since
⋃N

n=1 In ⊆ I for N finite, we can apply finite additivity and monotonicity to get

N∑
n=1

m(In) = m

(
N⋃

n=1

In

)
≤ m(I)

for each N . Letting N →∞ gives half of what we want to show
∞∑
n=1

m(In) ≤ m(I).

It remains to prove ≥ holds also.
If any of the intervals In is of infinite length, then it is clear that I ⊇ In must be infinite also

and so m(I) =
∑∞

n=1 In in this case.
So we assume each In is a finite (length) interval. Fix ε > 0 arbitrarily small and choose a

finite closed interval [a0, b0] ⊂ I . If m(I) <∞, choose a0 < b0 with b0 − a0 > m(I)− ε (using
Lemma 2.1.18). If I is infinite take [a0, b0] a finite interval contained it of any large length.

Now [a0, b0] ⊆ I ⊆
⋃∞

n=1 In. Using Lemma 2.1.19 we can find open intervals Jn with
In ⊆ Jn andm(Jn) < m(In)+ε/2n. We then have an open cover [a0, b0] ⊆

⋃∞
n=1 In ⊆

⋃∞
n=1 Jn

of the compact interval [a0, b0] by the open intervals Jn. By the Heine Borel theorem, there must
be a finite subcover

[a0, b0] ⊆
N⋃

n=1

Jn
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(for some N <∞). By subadditivity of m

b0 − a0 = m([a0, b0] ≤
N∑
j=1

m(Jn)

≤
N∑
j=1

(m(In) + ε/2n)

≤
N∑
j=1

m(In) +
N∑

n=1

ε/2n

≤
∞∑
j=1

m(In) +
∞∑
n=1

ε/2n

= ε+
∞∑
j=1

m(In)

In the case where m(I) <∞ then we get

m(I)− ε ≤ ε+
∞∑
n=1

m(In)⇒ m(I) ≤ 2ε+
∞∑
n=1

m(In) + 2ε.2

But this is true no matter how small ε > 0 is and so we have m(I) ≤
∑∞

n=1 m(In) if m(I) <∞.
If m(I) =∞ we can choose b0− a0 as big as we like (with ε = 1 say) to get

∑∞
n=1m(In) =

∞ = m(I).

Corollary 2.1.20. The length function on J is countably subadditive — in the sense that when-
ever E ∈ J and E1, E2, E3, . . . is an infinite sequence of sets in J such that the union
E ⊆

⋃∞
n=1 En (think of the En as a countable cover of E), then

m(E) ≤
∞∑
n=1

m(En).

Proof. We can deduce this from countable additivity (Proposition 2.1.17) and monotonicty as
follows. First we deal with the case where E =

⋃∞
n=1En ∈J .

We generate a sequence of disjoint sets F1, F2, . . . ∈ I such that Fn ⊆ En,
⋃n

j=1 Fj =⋃n
j=1Ej for each n and

⋃∞
n=1 Fn = E. To do that let F1 = E1 and inductively define

Fn = En \

(
n−1⋃
j=1

Ej

)
= En ∩

(
n−1⋃
j=1

Ej

)c

∈ I

for n > 1.
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The properties claimed for (Fn)∞n=1 are rather easy to check (by induction) and the by count-
able addiivity of m we have

m(E) = m

(
∞⋃
n=1

Fn

)
=
∞∑
n=1

m(Fn) ≤
∞∑
n=1

m(En)

(because Fn ⊆ En ⇒ m(Fn) ≤ m(Fn) using monotonicty of m).
For the general case where E (

⋃∞
n=1En, note that

∞⋃
n=1

(En ∩ E) =

(
∞⋃
n=1

En

)
∩ E = E

and so by the first case (since En ∩ E ∈ I for all n)

m(E) ≤
∞∑
n=1

m(En ∩ E) ≤
∞∑
n=1

m(En)

(using monotonicity of m to get m(En ∩ E) ≤ m(En)).

Notation 2.1.21. If E ⊆ R and x0 ∈ R we define

x0 + E = {x0 + x : x ∈ E}

(and refer to x0 + E as the translate of E by x0).

Proposition 2.1.22 (Translation invariance). For E ∈J and x0 ∈ R we have x0 +E ∈J and
m(x0 + E) = m(E).

Proof. Exercise. [Hint: Let T (x) = x + x0, so that T translates x by x0, and show that if I
is an interval with endpoints a < b (and length m(I) = b − a)), then I + x0 has endpoints
a + x0 < b + x0 (and the same length (b + x0) − (a + x0) = b − a). Look at E in standard
form.]

2.2 Outer measure
Definition 2.2.1 (Outer measure). We now define the outer measure of an arbitrary subset S ⊆ R
to be

m∗(S) = inf

{
∞∑
n=1

m(En) : E1, E2, . . . ∈J with S ⊆
∞⋃
n=1

En

}
(with the understanding that if

∑∞
n=1m(En) =∞ always, then m∗(S) =∞).

Remark 2.2.2. Outer measure is defined on the algebra P(R) of all subsets of R, but it fails to
be even finitely additive. We will identify a smaller algebra, the algebra of Lebesgue measurable
subsets, on which m∗ is countably additive. In the meantime, we will give some properties that
m∗ does have.
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It should be clear soon thatm∗ is defined to be as large as it can be subject to two requirements
(a) countably subadditive and (b) agrees with m on J .

In the arguments that follow, you may like to notice any time we delve into what J is.
We will be making use of rather general facts — the fact that J is an algebra, countable (sub)
additivity of m, monotonicity of m, m(∅) = 0 and translation invariance of m. But we won’t be
delving into the details of m or J .

Since J is an algebra, for any S ⊆ R we can take E1 = R, En = ∅ for n = 2, 3 . . . and
so there is always at least one possible choice for the sequence (En)∞n=1 used in the definition of
m∗(S).

Proposition 2.2.3. (i) m∗(∅) = 0

(ii) S1 ⊆ S2 ⊆ R⇒ m∗(S1) ≤ m∗(S2) (monotonicity)

(iii) If S1, S2, . . . ⊆ R, then

m∗

(
∞⋃
n=1

Sn

)
≤

∞∑
n=1

m∗(Sn)

(recall that this is called countable subadditivity)

(iv) If E ∈J , then m∗(E) = m(E).

(v) For S ⊆ R and x0 ∈ R, m∗(x0 + S) = m∗(S) (translation invariance of outer measure).

Proof. (i) We can take En = ∅ ∈ J for each n ≥ 1 and then ∅ ⊆
⋃∞

n=1En while∑∞
n=1m(En) = 0. So m∗(∅) ≤ 0. Hence m∗(∅) = 0.

(ii) If m∗(S2) = ∞ then certainly the inequality is true. For the case m∗(S2) < ∞, if
E1, E2, . . . ∈ J with S2 ⊆

⋃∞
n=1En, then certainly also S1 ⊆

⋃∞
n=1 En and m∗(S1) ≤∑∞

n=1m(En). But this sum can be arbitrarily close to m∗(S2) and so m∗(S1) ≤ m∗(S2).

(iii) If
∑∞

n=1m
∗(Sn) =∞, then the inequality is true and so we consider the case

∑∞
n=1m

∗(Sn) <
∞. Fix ε > 0 and for each n, choose En,1, En,2, . . . ∈J with

Sn ⊆
∞⋃
j=1

En,j and
∞∑
j=1

m(En,j) ≤ m∗(Sn) +
ε

2n
.

Then, taking S =
⋃∞

n=1 Sn we have

S ⊆
∞⋃
n=1

∞⋃
j=1

En,j

(a countable number of sets in J that can be arranged as a single sequence) and so

m∗(S) ≤
∞∑
n=1

∞∑
j=1

m(En,j) ≤
∞∑
n=1

(
m∗(Sn) +

ε

2n

)
=
∞∑
n=1

m∗(Sn) + ε.

Since we can take ε > 0 arbitrarily small we have the result.
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(iv) For E ∈J we can take E1 = E and En = ∅ for n = 2, 3, . . .. That gives E1, E2, . . . ∈J
with E ⊆

⋃∞
n=1En and shows that m∗(E) ≤

∑∞
n=1 m(En) = m(E) + 0 = m(E).

On the other hand if we have any E1, E2, . . . ∈ J with E ⊆
⋃∞

n=1En, then we can say
that

E = E ∩

(
∞⋃
n=1

En

)
=
∞⋃
n=1

E ∩ En ∈J

and apply countable subadditivity of m (Corollary 2.1.20) to deduce

m(E) ≤
∞∑
n=1

m(E ∩ En) ≤
∞∑
n=1

m(En).

In this way we conclude that m(E) ≤ m∗(E). Combining with the reverse inequality
obtained first we get equality, as required.

(v) We show m∗(x0 + S) ≤ m∗(S) first. Of course if m∗(S) = ∞, this is true. If m∗(S) <
∞, for any ε > 0 we must be able to find E1, E2, . . . ∈ J so that S ⊆

⋃∞
n=1 En and∑∞

n=1m(En) ≤ m∗(S)+ε. Then x0 +S ⊆
⋃∞

n=1(x0 +En), where we know x0 +En ∈J
with m(x0 + En) = m(En) (by translation invariance of m), and so we have

m∗(x0 + S) ≤
∞∑
n=1

m(x0 + En) =
∞∑
n=1

m(En) ≤ m∗(S) + ε.

As ε > 0 can be arbitrary, we conclude m∗(x0 + S) ≤ m∗(S).

The reverse inequality follows by applying the same fact to −x0 and S̃ = x0 + S to get
m∗((−x0) + S̃) ≤ m∗(S̃), which means m∗(S) ≤ m∗(x0 + S). So we have equality.

Corollary 2.2.4. m∗ is finitely subadditive. That is, if S1, S2, . . . , Sn ⊆ R, then

m∗

(
n⋃

j=1

Sj

)
≤

n∑
j=1

m∗(Sj).

Proof. Exercise.

2.3 Lebesgue measurable sets
Although we have not justified the claim that m∗ fails to be finitely additive, we use it as a way
to distinguish the well-behaved sets.

Definition 2.3.1. We say that a subset F ⊂ R is Lebesgue measurable (or measurable with
respect to the outer measure m∗) if for every subset S ⊂ R,

m∗(S) = m∗(S ∩ F ) +m∗(S ∩ F c).

We denote the collection of Lebesgue measurable sets by L .
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The criterion used to define L is called the Carathéodory criterion. Our aim now is to show
that this class L is a well-behaved algebra, in fact a σ-algebra and that the restriction of m∗ to
L is also well-behaved. We need some definitions so we can express things concisely.

Notice that the Carathéodory criterion says that F and F c divides every subset S ⊆ R addi-
tively for m∗. Here is a small simplification of the criterion.

Lemma 2.3.2. A set F ⊂ R is in L if it satisfies

m∗(S) ≥ m∗(S ∩ F ) +m∗(S ∩ F c).

for each S ⊆ R.

Proof. By subadditivity of m∗, we always know

m∗(S) ≤ m∗(S ∩ F ) +m∗(S ∩ F c).

and combining with the assumption in the lemma we get equality,

Example 2.3.3. If F ⊂ R has m∗(F ) = 0, then F ∈ L .

Proof. From Lemma 2.3.2 what we need to do is consider and arbitrary S ⊆ R and show

m∗(S) ≥ m∗(S ∩ F ) +m∗(S ∩ F c).

Since S∩F ⊆ F , we havem∗(S∩F ) ≤ m∗(F ) = 0 (asm∗ is monotone) and som∗(S∩F ) =
0. Hence what we need to show is

m∗(S) ≥ 0 +m∗(S ∩ F c) = m∗(S ∩ F c).

But S ∩ F c ⊆ S ⇒ m∗(S ∩ F c) ≤ m∗(S) and that shows F ∈ L .

Definition 2.3.4. An algebraA (of subsets of R) is called a σ-algebra (‘sigma-algebra’) if when-
ever E1, E2, . . . ∈ A, then

⋃∞
n=1 En ∈ A. [In words: A is closed under the operation of taking

countable unions.]

Definition 2.3.5. If Σ is a σ-algebra (of subsets of R) and µ : Σ→ [0,∞] is a function, then we
call µ a measure on Σ if it satisfies

(a) µ(∅) = 0

(b) µ is countably additive, that is whenever E1, E2, . . . ∈ Σ are disjoint, then µ (
⋃∞

n=1 En) =∑∞
n=1 µ(En).

Theorem 2.3.6 (Carathéodory). L is a σ-algebra, J ⊂ L and the restriction of outer measure
m∗ to L defines a measure on L .

Proof. Step 1: L is an algebra.
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(i) ∅ ∈ L

For any S ⊆ R, m∗(S ∩ ∅) +m∗(S ∩ ∅c) = m∗(∅) +m∗(S) = 0 +m∗(S) = m∗(S).
(We could also use the more general result from Example 2.3.3.)

(ii) F ∈ L ⇒ F c ∈ L

For any S ⊆ R, m∗(S ∩ F c) + m∗(S ∩ (F c)c) = m∗(S ∩ F c) + m∗(S ∩ F ) =
m∗(S ∩ F ) +m∗(S ∩ F c) = m∗(S) by measurability of F .

(iii) F1, F2 ∈ L ⇒ F1 ∪ F2 ∈ L .
We first show F1 ∩ F2 ∈ L (for F1, F2 ∈ L ). Take S ⊆ R. It may help to look at
this Venn diagram to follow the argument.

F2F1

S1

S2 S3

S4

S

Notice that

m∗(S) = m∗(S ∩ F1) +m∗(S ∩ F c
1 )

= m∗(S ∩ F1 ∩ F2) +m∗(S ∩ F1 ∩ F c
2 ) +m∗(S ∩ F c

1 )

(using first F1 ∈ L , then F2 ∈ L ). But also

m∗(S ∩ (F1 ∩ F2)c) = m∗(S ∩ (F1 ∩ F2)c ∩ F1) +m∗(S ∩ (F1 ∩ F2)c ∩ F c
1 )

(F1 and F c
1 split S ∩ (F1 ∩ F2)c additively)

= m∗(S ∩ (F c
1 ∪ F c

2 ) ∩ F1) +m∗(S ∩ (F c
1 ∪ F c

2 ) ∩ F c
1 )

= m∗(S ∩ F c
2 ∩ F1) +m∗(S ∩ F c

1 )

= m∗(S ∩ F1 ∩ F c
2 ) +m∗(S ∩ F c

1 )

and so we get

m∗(S) = m∗(S ∩ F1 ∩ F2) +m∗(S ∩ (F1 ∩ F2)c).

This shows F1 ∩ F2 ∈ L

As F1 ∪ F2 = (F c
1 ∩ F c

2 )c, we get F1 ∪ F2 ∈ L because F c
1 , F

c
2 ∈ L ⇒ F c

1 ∩ F c
2 ∈

L ⇒ (F c
1 ∩ F c

2 )c ∈ L , or F1 ∪ F2 ∈ L .
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Step 2: L is a σ-algebra and m∗ is countably additive on L .

If F1, F2, . . . ∈ L we aim to show that F =
⋃∞

n=1 Fn ∈ L . It is enough to do that
when F1, F2, . . . are disjoint, since we can replace F1, F2, . . . by F̃1 = F1, F̃2 = F2 ∩ F c

1 ,
. . . , F̃n = Fn ∩

(⋃n−1
j=1 Fj

)c
, thus getting a disjoint sequence in L with the same union

F =
⋃∞

n=1 F̃n.

So we assume that F1, F2, . . . are disjoint, F =
⋃∞

n=1 Fn.

Take any S ⊆ R. We claim that m∗(S) ≥ m∗(S ∩F ) +m∗(S ∩F c) always (which shows
F ∈ L via Lemma 2.3.2).

Take Gn =
⋃n

j=1 Fn (which we know is in L as L is an algebra) and notice that

m∗(S) ≥ m∗(S ∩Gn) +m∗(S ∩Gc
n).

Since Fn ∈ L we have

m∗(S ∩Gn) = m∗(S ∩Gn ∩ Fn) +m∗(S ∩Gn ∩ F c
n) = m∗(S ∩ Fn) +m∗(S ∩Gn−1)

(for n > 1). Since F1 = G1 we then can see by induction on n that

m∗(S ∩Gn) =
n∑

j=1

m∗(S ∩ Fj),

and so

m∗(S) ≥
n∑

j=1

m∗(S ∩ Fj) +m∗(S ∩Gc
n).

However Gn ⊂ F implies Gc
n ⊃ F c and so (by monotonicity of m∗) we get

m∗(S) ≥
n∑

j=1

m∗(S ∩ Fj) +m∗(S ∩ F c).

Let n→∞ to get

m∗(S) ≥
∞∑
n=1

m∗(S ∩ Fn) +m∗(S ∩ F c). (2.3.1)

From subadditivity of m∗, this inequality implies

m∗(S) ≥ m∗

(
∞⋃
n=1

S ∩ Fn

)
+m∗(S ∩ F c) = m∗(S ∩ F ) +m∗(S ∩ F c).

So F ∈ L is verified.
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Using (2.3.1) for S = F we get

m∗(F ) = m∗

(
∞⋃
n=1

Fn

)
≥

∞∑
n=1

m∗(Fn)

and subadditivity of m∗ gives the opposite inequality. That shows countable additivity of
m∗ on L .

Step 3: J ⊆ L .

Fix E ∈J . Take any S ⊆ R. We claim that m∗(S) ≥ m∗(S ∩E) +m∗(S ∩Ec) always
(which shows E ∈ L via Lemma 2.3.2). If m∗(S) =∞ there is nothing to do.

For any ε > 0 (fixed) and then there must be E1, E2, . . . ∈ J with S ⊆
⋃∞

n=1En and∑∞
n=1 m(En) < m∗(S) + ε.

We then have S ∩ E ⊆
⋃∞

n=1En ∩ E, and En ∩ E ∈J . So

m∗(S ∩ E) ≤
∞∑
n=1

m(En ∩ E).

Similarly, as Ec ∈J ,

m∗(S ∩ Ec) ≤
∞∑
n=1

m(En ∩ Ec).

But m(En) = m(En ∩ E) +m(En ∩ Ec) (finite additivity of m) and so

m∗(S ∩ E) +m∗(S ∩ Ec) ≤
∞∑
n=1

m(En ∩ E) +
∞∑
n=1

m(En ∩ Ec)

=
∞∑
n=1

(m(En ∩ E) +m(En ∩ Ec))

=
∞∑
n=1

m(En)

≤ m∗(S) + ε.

As this holds for each ε > 0 we havem∗(S∩E)+m∗(S∩Ec) ≤ m∗(S) and that completes
the argument.

Remark 2.3.7. It may be a good idea now to recap a little on where we have reached.
We began with lengths of finite intervals I with endpoints a < b (or even a = b in the case of

one point intervals), where we assigned the length m(I) = b− a, together with infinite intervals
to which we assigned infinite length. Just to make things more convenient we worked with finite
unions of intervals of these types so that we would have an algebra of sets to work with.

For lengths of sets in that algebra, the interval algebra J , we showed that certain nice prop-
erties worked.
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We then defined outer measure for arbitrary subsets of R, basically by making m∗(E) be the
biggest thing it could be if we wanted it to agree with m(E) when E is in the interval algebra J
and to be countably subadditive.

Finally we identified a σ-algebra L containing J and on which m∗ is well-behaved in the
sense of being countably additive.

We have pretty much what we need to start looking at integration, but first we take stock a bit
of this σ-algebra L .

Proposition 2.3.8. L is translation invariant. That is if F ∈ L and x0 ∈ R, then x0 +F ∈ L .

Proof. Exercise. (It is not that hard because we already know m∗(x0 + E) = m∗(E) for every
E ⊆ R. See Proposition 2.2.3 (v).)

Proposition 2.3.9. If C is a set of subsets of R (so that means C ⊆ P(R) is a subset of the power
set of R, the collection of all subsets of R), then C is a σ-algebra if and only if it satisfies

(i) ∅ ∈ C

(ii) E ∈ C ⇒ Ec ∈ C

(iii) E1, E2, . . . ∈ C ⇒
⋃∞

n=1En ∈ C.

Proof. We defined a σ-algebra to be an algebra with the additional property of being closed
under taking countable unions. So every σ-algebra C has these three properties.

For the converse, suppose C has these three properties. We are just missing the property of
an algebra that

E1, E2 ∈ C ⇒ E1 ∪ E2 ∈ C.
However, if E1, E2 ∈ C we can make an infinite sequence by defining En = ∅ for n ≥ 3. Now
E1, E2, . . . ∈ C and so we have

⋃∞
n=1 En ∈ C. But

⋃∞
n=1En = E1 ∪E2 because the other sets in

the sequence are all empty. So we do have E1 ∪ E2 ∈ C.

Proposition 2.3.10. For any set S ⊂ P(R) of subsets of R, there is a smallest σ-algebra (of
subsets of R) that contains S.

We call it the σ-algebra generated by S and denote it sometimes by ΣS .

Proof. This is sort of easy, but in an abstract way. There is certainly one possible σ-algebra
containing S, that is P(R).

What we do is look at all possible σ-algebra, the set

S = {Σ : Σ ⊆ P(R) a σ-algebra and S ⊂ Σ}.

Then we take their intersection
ΣS =

⋂
Σ∈S

Σ

and argue that ΣS is still a σ-algebra. In fact that ΣS ∈ S and is the contained in every Σ ∈ S
by the way we defined it.

We check
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(i) ∅ ∈ ΣS

because ∅ ∈ Σ for each Σ ∈ S (and S is not empty — there is at least one Σ in it).

(ii) E ∈ ΣS ⇒ Ec ∈ ΣS

because E ∈ ΣS ⇒ E ∈ Σ for each Σ ∈ S , and so Ec ∈ Σ for each Σ ∈ S . Thus
Ec ∈ ΣS .

(iii) E1, E2, . . . ∈ ΣS ⇒
⋃∞

n=1En ∈ ΣS

If En ∈ ΣS for n = 1, 2, . . ., then we have E1, E2, . . . ∈ Σ for each Σ ∈ S . So
⋃∞

n=1En ∈
Σ for each Σ ∈ S , and hence

⋃∞
n=1 En ∈ ΣS .

Finally S ⊂ ΣS holds because S ⊂ Σ for each Σ ∈ S .

Lemma 2.3.11. If Σ is a σ-algebra (of subsets of R) and E1, E2, . . . ∈ Σ, then
⋂∞

n=1 En ∈ Σ.
(So σ-algebras are closed under countable intersections as well as under countable unions.)

Proof. This is because De Morgans laws allow us to turn intersections unto unions via taking
complements:

∞⋂
n=1

En =

(
∞⋃
n=1

Ec
n

)c

We have Ec
n ∈ Σ for all n, hence

⋃∞
n=1E

c
n ∈ Σ, hence (

⋃∞
n=1 E

c
n)

c ∈ Σ.

Theorem 2.3.12. The following σ-algebras of subsets of R are all the same σ-algebra (and
usually called the Borel σ-algebra on R)

1. Σ1 = the σ-algebra generated by J (the interval algebra)

2. Σ2 = the σ-algebra generated by the collection of all finite open intervals (a, b) (with
a < b)

3. Σ3 = the σ-algebra generated by the collection of all finite closed intervals [a, b] (with
a ≤ b)

4. Σ4 = the σ-algebra generated by the collection of all open subsets of R

5. Σ5 = the σ-algebra generated by the collection of all closed subsets of R

Once we know they are all equal we denote the σ-algebra by ΣBorel. Sets in ΣBorel are called
Borel subsets of R.

Proof. It helps to notice first that one point sets are included in each of these σ-algebras.
Starting with the interval algebra J and any x0 ∈ R we have {x0} = [x0, x0] ∈ J . Thus

{x0} ∈ Σ1.
For open intervals, we can say instead that {x0} =

⋂∞
n=1

(
x0 − 1

n
, x0 + 1

n

)
. So we have

{x0} ∈ Σ2.
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That also covers Σ4 (open intervals are open sets).
Since single point sets are closed, we have no bother with {x0} ∈ Σ5 (for each x0 ∈ R).

Since single point sets are closed intervals also, because [a, a] = {a}, the fact that {x0} ∈ Σ3 is
also easy.

We can see immediately that any σ-algebra that contains J (in particular Σ1) must contain
finite open intervals (a, b). It follows that Σ1 ⊇ Σ2.

To show Σ2 ⊇ Σ1 we need to show Σ2 contains all the kinds of intervals that generate the
algebra J , namely all intervals. We have (a, b] = (a, b) ∪ {b} ∈ Σ2, [a, b] = (a, b) ∪ {a} ∈ Σ2,
and [a, b] = (a, b) ∪ {a} ∪ {b} ∈ Σ2 if a < b. Since we also have one point (closed) intervals
[a, a] ∈ Σ2, that covers all the finite ones. Since (a,∞) =

⋃∞
n=1(a + n − 1, a + n] ∈ Σ2

(countable union of sets in Σ2 already), [a,∞) = {a} ∪ (a,∞) ∈ Σ2, (−∞, a) = [a,∞)c ∈ Σ2,
(−∞, a] = {a} ∪ (a,∞)c ∈ Σ2, and (−∞,∞) = ∅c ∈ Σ2 (true for any σ-algebra). It follows
that all intervals are in Σ2, thus J ⊂ Σ2 and so Σ1 = ΣJ ⊆ Σ2.

Σ2 ⊇ Σ3 since [a, b] = (a, b) ∪ {a} ∪ {b} and Σ3 ⊇ Σ2 also because (a, b) = [a, b] ∩ ({a} ∪
{b})c. So Σ2 = Σ3.

To show Σ2 ⊇ Σ4 we show that every open subset U ⊆ R is a countable union of open
intervals. For each x ∈ U , there is δ > 0 with (x− δ, x+ δ) ⊂ U . (That is what it means for U to
be an open set.) Now there are rational numbers q1, q2 with x−δ < q1 < x < q2 < x+δ and that
means x ∈ (q1, q2) ⊂ U . It follows that U is the union of all open intervals (q1, q2) with rational
endpoints q1 < q2 that are contained in U . But there are fewer such intervals than there are pairs
(q1, q2) ∈ Q × Q = Q2. Since Q2 is a countable set, the collection of these rational intervals
contained in U is countable. So U is a countable union of open intervals, hence U ∈ Σ2. This
shows Σ2 ⊇ Σ4.

Since the finite open intervals (a, b) are all open sets in R, it is clear that they are all in Σ4

and Σ4 ⊇ Σ2. Combining we have Σ2 = Σ4.
So we now have Σ1 = Σ2 = Σ3 = Σ4.
Finally Σ4 = Σ5 because closed sets are exactly the complements of open sets.

Corollary 2.3.13. The Borel σ-algebra (of subsets of R) is the σ-algebra generated by the inter-
vals (−∞, b] with b ∈ R.

Proof. We have
(a, b] = (−∞, b] ∩ ((−∞, a])c.

So any σ-algebra that contains the intervals (−∞, b] must also contain all half-open intervals of
the form (a, b]. Then it must contain single point sets as {b} =

⋂∞
n=1(b− 1/n, b]. So it contains

all closed intervals [a, b] = {a} ∪ (a, b].
Thus it must contain the Borel σ-algebra (as the Borel σ-algebra is Σ3 above).
The reverse inclusion, that Borel σ-algebra must contain the σ-algebra generated by the in-

tervals (−∞, b] is easy because each (−∞, b] ∈J .

Remark 2.3.14. We have not proved that there any sets not included in L . This is ‘true’, though
the proof relies on the axiom of choice, something that cannot be proved based on the usual
axioms of mathematical logic.
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The idea for the proof is to define an equivalence relation on R by x ∼ y ⇐⇒ x− y ∈ Q.
Then choose one x ∈ [0, 1] belonging to each equivalence class and let E be the set of those x.
Now

[0, 1] ⊆
⋃

q∈Q∩[−1,1]

(q + E) ⊆ [−1, 2]

We know m∗(q + E) = m∗(E) for each q. If E was in L , then so would q + E for each q, and
countable additivity of m∗ on L would give a contradiction from

1 = m∗([0, 1]) ≤ m∗

 ⋃
q∈Q∩[−1,1]

(q + E)

 =
∑

q∈Q∩[−1,1]

m∗(q + E) ≤ m∗([−1, 2]) = 3.

(Here we use that the sets q + E are disjoint for different q ∈ Q.) If m∗(E) > 0, the sum would
be ∞, while if m∗(E) = 0, the sum would be 0. Neither possibility is between 1 and 3. So
E /∈ L .

Remark 2.3.15. We have also not proved that there are fewer Borel sets than there are Lebesgue
measurable sets, but that is also true (and does not need the axiom of choice — it needs just a bit
more about how to distinguish different sizes of uncountable sets than we have looked into).

It is not too hard to show that for each E ∈ L , there is a set B is in the Borel σ-algebra
(that is a Borel set B) with m∗(E∆B) = 0 (where E∆B = (E \B)∪ (B \E) is the symmetric
difference). I think we can omit that proof. The opposite is relatively easy to prove: that if B is
in the Borel σ-algebra and E ⊂ R has m∗(E∆B) = 0, then E ∈ L .

So, in a way, the difference between the Borel σ-algebra and L comes from the fact that L
includes all sets E with m∗(E) = 0.

R. Timoney February 21, 2018
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