MA1S12 (Timoney) Tutorial sheet 7c

[March 10–14, 2014]

Name: Solutions

1. Find the eigenvalues for the matrix

$$A = \begin{bmatrix} -1 & 4 \\ 2 & 4 \end{bmatrix}$$

Solution: We need to solve the chracteristic equation, $det(A - \lambda I_2) = 0$ and that is

$$\det(A - \lambda I_2) = \det\begin{bmatrix} -1 - \lambda & 4\\ 2 & 4 - \lambda \end{bmatrix} = (\lambda + 1)(\lambda - 4) - 8 = 0$$

or

$$\lambda = \frac{\lambda^2 - 3\lambda - 12 = 0}{3 \pm \sqrt{3^2 + 48}} = \frac{3 \pm \sqrt{57}}{2}$$

Eigenvalues are $(3+\sqrt{57})/2$ and $(3-\sqrt{57})/2$.

2. For

$$B = \begin{bmatrix} 3 & -2/3 \\ 0 & 2 \end{bmatrix}$$

it works out that $B = SDS^{-1}$ with

$$S = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, S^{-1} = \begin{bmatrix} 1 & -2/3 \\ 0 & 1/3 \end{bmatrix}.$$

(a) What are the eigenvalues of B and the corresponding eigenvectors? Solution: The eigenavlues are the diagonal entries of D, that is 3 and 2. The eigenvectors are the columns of S.

For $\lambda=3$ we get the eigenvector $\begin{bmatrix}1\\0\end{bmatrix}$ and for $\lambda=-3$ we get $\begin{bmatrix}2\\3\end{bmatrix}$

(b) Find e^{Bx} for $x \in \mathbb{R}$.

Solution: Since $Bx = S(Dx)S^{-1}$ (and Dx is diagonal) we have $e^{Bx} = Se^{Dx}S^{-1}$.

$$Dx = \begin{bmatrix} 3x & 0 \\ 0 & 2x \end{bmatrix}, \qquad e^{Dx} = \begin{bmatrix} e^{3x} & 0 \\ 0 & e^{2x} \end{bmatrix}$$

$$e^{Bx} = Se^{Dx}S^{-1} = S \begin{bmatrix} e^{3x} & 0 \\ 0 & e^{2x} \end{bmatrix} \begin{bmatrix} 1 & -2/3 \\ 0 & 1/3 \end{bmatrix}$$
$$= S \begin{bmatrix} e^{3x} & -2e^{3x}/3 \\ 0 & e^{2x}/3 \end{bmatrix}$$
$$= \begin{bmatrix} e^{3x} & (-2e^{3x} + 2e^{2x})/3 \\ 0 & e^{2x} \end{bmatrix}$$

Richard M. Timoney