
MA1S12 (Timoney) Tutorial sheet 5b
[February 17–21, 2014]

Name: Solutions

For the first two questions, let
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Then A is in fact an orthogonal matrix and det(A) = 1.

1. Show that the axis of rotation for A is parallel to the vector i+ 2j− 2k.

Solution:
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Since the vector i+ 2j− 2k is fixed by A it must be along the axis of rotation.

2. Find cosα where α is the angle of rotation for A.

Solution: We know that trace(A) = 1 + 2 cosα. So we get

1 + 2 cosα = (1 + 4
√
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√
3)/18 + (8 + 5

√
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√
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Thus cosα =
√
3/2.

3. Use the Gram-Schmidt method starting with the 3 vectors u = (2i− j+k)/
√
6, r = j+k

and s = k.

Solution: See solution to sheet 5a (different vectors).

Answer should be u, v = (j− k)/
√
2 and w = (−i− j+ k)/

√
3
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