
MA1S12 (Timoney) Tutorial sheet 5a
[February 17–21, 2014]

Name: Solutions

For the first two questions, let
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Then A is in fact an orthogonal matrix and det(A) = 1.

1. Show that the axis of rotation for A is parallel to the vector i+ 2j− 2k.

Solution: Calculate
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2. Find cosα where α is the angle of rotation for A.

Solution: We know that trace(A) = 1 + 2 cosα. So we get

1 + 2 cosα = (1 + 4
√
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√
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√
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√
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Thus cosα =
√
3/2.

3. Use the Gram-Schmidt method starting with the 3 vectors u = (2i− j+k)/
√
6, r = i+2j

and s = k.

Solution:

Step 1: If u is not a unit vector already, replace it by (1/‖u‖)u (the unit vector with the
same direction).
‖u‖2 = (4 + 1 + 1)/6 = 1. So we don’t need this step.

Step 2: Take

v =
r− (r · u)u
‖r− (r · u)u‖

Here r · u = 2− 2 + 0 = 0 and so
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‖r‖
=
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Step 3: Take

w =
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√
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√
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The result of Gram-Schmidt is then the 3 vectors u, v and w.
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