MA1S12 (Timoney) Tutorial sheet 2
[January 27-31, 2014]

Name: Solutions

1. Find 3 vectors u, v and w so that
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Solution: The vectors u, v and w should have components given by the 3 rows of the
martrix:

u = i+0j+3k
v = i+4j—4k
w = 8i+9j+k

How will w - (v X u) be related to the determinant?

Solution: It will be —1 times the determinant (as the change of swapping u and w corre-
sponds to swapping two rows of the matrix).

What about w - (u X v)?
Solution: This will be the same as the determinant (another swop and so changes the sign
back again to the original).

2. A parallelepiped in space has one corner at (0,1,0) and adjacent corners at (1,2,3),
(2,3,4) and (3,2, 1). What is its volume?

Solution: If we give names to the points
P=1(0,1,0),Q =(1,2,3),R=(2,3,4) and S = (3,2, 1)

then the vectors PZQ, PR and PS are vectors along the 3 edges of the parallelepiped from
the corner P. The determinant of the matrix with these are row will give the volume of the
parallelepiped (or minus the volume).
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So the volume is 4.

Q-P
i+ 2j+ 3k — ]
i+j+3k

R—P =2i+2j+4k
S-P=3i+j+k

1 3
det 2 4
1 1
1 3
0 =2
-2 =8
1 1 3
—det |0 =2 =8| =—(-2)(-2)=—4
0O 0 =2

det

SO O = W

3. Compute this determinant by cofactor expansion along the second row.
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Solution: (The pattern of signs stars with - in the (2, 1) place.)
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(expanding first along row 2 and second along row 3

2(3 — 20) — 4(8 — 6) = 26



