
Chapter 3. Eigenvalues, diagonalisation and some applications
This material is a reduced treatment of what is in Anton & Rorres chapter 6, chapter 5 (mostly
for the case of 3 dimensions) and sections 5.4, 6.5 and 10.5.

3.1 Orthogonal diagonalisation

We move on now to consider linear transformations f : R3 → R3 that are given by diagonal
matrices in some choice of frame or orthonormal basis. (We could do this in R2 and it would be
slightly easier, or we could do it in Rn for any n but that seems too abstract.)

If we start with a 3× 3 diagonal matrix

A =

λ1 0 0
0 λ2 0
0 0 λ3


we get a linear transformation f : R3 → R3, f(x) = Ax that has

f(i) =

λ1 0 0
0 λ2 0
0 0 λ3

10
0

 =

λ10
0

 = λ1i

and we can see similarly that

f(j) = λ2j and f(k) = λ3k.

We want to look at linear transformations f (or 3 × 3 matrices A) that behave like this, not
on the standard basis i, j,k but instead on some other orthonormal basis u,v,w.

3.1.1 Proposition. Suppose we have a 3×3 matrixA, and a corresponding linear transformation
f : R3 → R3 given by the rule f(x) = Ax.

Then there is an orthonormal basis u,v,w and scalars λ1, λ2, λ3 so that

f(u) = λ1u, f(v) = λ2v and f(w) = λ3w

if only if there is an orthogonal matrix P so that

A = P

λ1 0 0
0 λ2 0
0 0 λ3

P t

Idea of the proof. We’ll prove some of this, though none of it is really hard.
Suppose we have the orthonormal basis u,v,w and the scalars λ1, λ2, λ3. Where do we find

P ?
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Well it is the same change of basis matrix we used before in connection with rotations.

P =

u1 v1 w1

u3 v2 w3

u3 v3 w3


(where the columns come from u,v,w). Recall that

P i = u, P j = v, Pk = w,

and
P tu = i, P tv = j, P tw = k.

Look at the matrix

B = P

λ1 0 0
0 λ2 0
0 0 λ3

P t

(which we hope to show coincides with A).
If we calculate Bu we get

Bu = P

λ1 0 0
0 λ2 0
0 0 λ3

P tu

= P

λ1 0 0
0 λ2 0
0 0 λ3

 i

= P (λ1i)

= λ1P
ti

= λ1u

= f(u) = Au

Similarly
Bv = Av and Bv = Av

Since every x ∈ R3 can be written as a combination

x = (x · u)u+ (x · v)v + (x ·w)w

of u,v,w we can show now quite easily that Bx = Ax always.
If we use this for x = i we find

first column of B = first column of A

and we can show the other columns must coincide by taking x = j and x = k. So B = A.
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3.1.2 Observation. If

A = P

λ1 0 0
0 λ2 0
0 0 λ3

P t

thenAt = A. (We call a matrix with this property of being equal to its own transpose a symmetric
matrix.)

Proof. Recall that the transpose of a product is the product of the transposes taken in the reverse
order. So if A is as above then

At = (P t)t

λ1 0 0
0 λ2 0
0 0 λ3

t P t

= P

λ1 0 0
0 λ2 0
0 0 λ3

P t

= A

3.1.3 Theorem. The n× n symmetric matrices A are exactly those that can be written

A = PDP t

for an n× n orthogonal matrix P and an n× n diagonal matrix D.

3.1.4 Remark. The proof of this theorem is going to be beyond us. One bit is very easy and
we’ve already given it in the ‘Observation’. That is we showed (at least in the 3× 3 case) that if
A = PDP t, then At = A.

The other part is the hard part and what we’ll do is explain some of the ideas that you need
to know if you want to use the result. That is, we’ll explain how to find P and D starting with
a symmetric A. We won’t give any explanation of why it is always possible (in theory) to find
P and D. We’ll stick mainly to the 3 × 3 case, and the explanation here also skips over a
complication that can arise (when there are only 2 different eigenvalues, rather than the usual 3).

To some extent Proposition 3.1.1 already has the bones of what we need, but it helps to have
some more terminology to explain what to do.

3.1.5 Definition. A vector v ∈ Rn is called an eigenvector for a square n× n matrix A if

• v 6= 0, and

• Av is a multiple of v

So there is a scalar λ so that
Av = λv

The number λ is called the eigenvalue (some people may use the name ‘characteristic value’)
for the eigenvector v of A.
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3.1.6 Theorem. The eigenvalues of an n× n matrix A are exactly the solutions of the character-
istic equation for A, which is the equation

det(A− λIn) = 0

Proof. If λ is an eigenvalue for A, that means there is an eigenvector v for the eigenvalue λ. So,
Av = λv, and then we can say that

Av = λInv,

and that can be rearranged to say
(A− λIn)v = 0

Since v is an eigenvector, then v is not the obvious solution v = 0 of that equation. This is
a way of recognising that A − λIn is not invertible. (If A − λIn had an inverse matrix, then the
equation (A− λIn)v = 0 would have only the zero solution.)

But another way to say that A− λIn is not invertible is to say

det(A− λIn) = 0

(see Theorem 1.4.5).
This shows that if λ is an eigenvalue, then λ solves the characteristic equation.
To go the other way, that is to show that if λ solves the characteristic equation then λ must be

an eigenvalue, is not a very different line of argument. So we’ll skip that, as we’ve said enough to
show the connection between the concept of an eigenvalue and the solutions of the characteristic
equation.

3.1.7 Proposition (A slightly incomplete statement). If A is a symmetric matrix then we can
write A = PDP t (with P orthogonal and D diagonal) if we take

• D to be the diagonal matrix with the eigenvalues of A along the diagonal

• P to be a matrix where the columns are orthonormal eigenvectors of A for the eigenvalues
(in the same order as we take the eigenvalues along the diagonal of D).

We will not prove this. The idea is to take unit vector eigenvectors. So we find the eigenvalues
from the characteristic equation, and then we get eigenvectors for each eigenvalue. Next we
divide the eigenvectors by their length to make them unit vectors as well as eigenvectors.

The eigenvectors are usually automatically perpendicular to one another and so orthonormal.
The more complicated case is where there is more than one eigenvector for the same eigenvalue.
To explain that a bit more, any nonzero multiple of an eigenvector is always another eigenvector
for the same eigenvalue. (If Av = λv, then A(2v) = λ(2v). So 2v is again an eigenvector
for the eigenvalue λ, and we can change the factor 2 to any nonzero factor.) By ‘more than one
eigenvector’ I mean one where there are eigenvectors that are not just multiples of each other,
and still belong to the same eigenvalue λ.

Those cases are a bit more tricky to work out. But maybe we will manage not to pick any of
those more complicated examples!
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3.1.8 Example. For

A =

[
1 2
2 4

]
find an orthogonal matrix P and a diagonal matrix D so that A = PDP t.
Solution: We want the eigenvalues and so we should work out the characteristic equation

det(A− λI2) = 0

We have

A− λI2 =
[
1 2
2 4

]
− λ

[
1 0
0 1

]
=

[
1− λ 2
2 4− λ

]
So we have det(A− λI2) = (1− λ)(4− λ)− 4 = (λ− 1)(λ− 4)− 4 = λ2 − 5λ+ 4− 4 and
the characteristic equation works out as

λ2 − 5λ = 0

This is a quadratic equation (as it will be for every 2× 2 matrix) and so we can solve it. We can
do it in this case by factoring the equation as

λ(λ− 5) = 0

So the two solutions (the two eigenvalues) are λ = 0 and λ = 5.

Aside: Be careful not to divide out λ without taking account of the fact that λ = 0
is a solution.

This is only a 2× 2 example, rather than 3× 3 as we used for illustration before. So what we
have now is the two eigenvalues λ1 = 0 and λ2 = 5. We should take our diagonal matrix D to be

D =

[
λ1 0
0 λ2

]
=

[
0 0
0 5

]
but to find P we need eigenvectors.

For λ = λ1 = 0 (the first eigenvalue) we want a nonzero vector v =

[
v1
v2

]
∈ R2 so that

Av = λ1v. In this case that is Av = 0v, so Av = 0. We can find that by row-reducing the
augmented matrix [

1 2 : 0
2 4 : 0

]
The first step is to subtract 2 times row 1 from row 2, to get the new row 2:[

1 2 : 0
0 0 : 0

]
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This is already completely row reduced (reduced row echelon form) and it means that we really
only have one equation

v1 + 2v2 = 0

(as the second row gives 0 = 0 — so tells us nothing). We can say that v1 = −2v2 and v2 is a
free variable. If we take v2 = 1 then we get v1 = −2 and the nonzero solution

v =

[
−2
1

]
What would have happened if we took a different value for the free variable v2? If we took
v2 = 20 we would just get 20 times the above vector. So just a multiple of the same eigenvector,
not really different.

What we do want to do is to normalise that eigenvector to get one of length 1. In vector
notation we have

v = (−2)i+ j

and we want to take

v

‖v‖
=

−2i+ j√
(−2)2 + 12

=
1√
5
(−2i+ j) = − 2√

5
i+

1√
5
j

as our normalised eigenvector.
Now, for the other eigenvalue λ = λ2 = 5 we want a nonzero vector v (not the same v as we

have a moment ago) so that Av = 5v. We write that as Av = 5I2v or (A− 5I2)v = 0. We can
see that

A− 5I2 =

[
1 2
2 4

]
− 5

[
1 0
0 1

]
=

[
−4 2
2 −1

]
and this time we want to row reduce [

−4 2 : 0
2 −1 : 0

]
We should divide row 1 by −4 (to get 1 in the top left corner) and we have[

1 −1/2 : 0
2 −1 : 0

]
and then replace row 2 by OldRow 2 −2× OldRow1 to get[

1 −1/2 : 0
0 0 : 0

]
Again we have just one equation v1 − (1/2)v2 = 0. Again we should take v2 free. This time
v1 = (1/2)v2 and if we pick v2 = 1 we get the eigenvector

1

2
i+ j
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(Actually it might save us some bother to take v2 = 2 instead.) We should normalise this to

(1/2)i+ j

‖(1/2)i+ j‖
=

(1/2)i+ j√
1/4 + 1

=
(1/2)i+ j√

5/4

=
(1/2)i+ j√

5/2

=
2√
5
((1/2)i+ j)

=
1√
5
i+

2√
5
j

We now have the two eigenvectors to make into the columns of P . The result is

P =

[
− 2√

5
1√
5

1√
5

2√
5

]

Notice that the columns of P are perpendicular to one another. As we have normalised the
columns to be unit vectors, we have that P is an orthogonal matrix. We do then get A = PDP t

or

A =

[
1 2
2 4

]
=

[
− 2√

5
1√
5

1√
5

2√
5

] [
0 0
0 5

] [− 2√
5

1√
5

1√
5

2√
5

]t
=

[
− 2√

5
1√
5

1√
5

2√
5

][
0 0
0 5

][− 2√
5

1√
5

1√
5

2√
5

]

If you are doubtful that the theory really holds out (or just want to check that we made no
slips in the calculations) we can verify[

− 2√
5

1√
5

1√
5

2√
5

] [
0 0
0 5

][− 2√
5

1√
5

1√
5

2√
5

]
=

[
0
√
5

0 2
√
5

][− 2√
5

1√
5

1√
5

2√
5

]
=

[
1 2
2 4

]
The theory says that this should always work for a symmetric A. One thing that could possi-

bly go wrong for the 2×2 case is that the characteristic equation (the quadratic equation to solve
for the eigenvalues) might have complex roots. Well, that never will happen if A is symmetric.

Let’s try a 3 × 3 example to see how it goes. You can probably see that the calculations are
fairly long even for the 2× 2 case, though we could shorten what is written above by leaving out
some of the chatty bits.

3.1.9 Example. Find the eigenvalues of the matrix

A =

2 1 1
1 2 1
1 1 3


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Solution: We need to work out the characteristic equation det(A−λI3) = 0 and find its solutions.
First

A− λI3 =

2 1 1
1 2 1
1 1 3

− λ
1 0 0
0 1 0
0 0 1

 =

2− λ 1 1
1 2− λ 1
1 1 3− λ


We can expand the determinant along the first row

det(A− λI3) = (2− λ) det
[
2− λ 1
1 3− λ

]
− 1 det

[
1 1
1 3− λ

]
+ 1det

[
1 2− λ
1 1

]
= (2− λ)((2− λ)(3− λ)− 1)− (3− λ− 1)

+1− (2− λ)
= −(λ− 2)((λ− 2)(λ− 3)− 1)− (2− λ)− 1 + λ

= −(λ− 2)(λ2 − 5λ+ 6− 1)− 3 + 2λ

= −(λ− 2)(λ2 − 5λ+ 5)− 3 + 2λ

= −(λ3 − 5λ2 + 5λ− 2λ2 + 10λ− 10)− 3 + 2λ

= −(λ3 − 7λ2 + 15λ− 10)− 3 + 2λ

= −(λ3 − 7λ2 + 13λ− 7)

Now Theorem 3.1.3 says that there have to be 3 real solutions to this (3 eigenvalues for the
symmetric matrix A). However, it does not help us immediately with finding the solutions. In
fact every cubic equation has at least one real root, but the formula for the roots of a cubic is too
messy to be useful.

In practice the best hope for finding the roots is to use the remainder theorem. That says
that if λ = λ1 is a solution of the (polynomial) equation

λ3 − 7λ2 + 13λ− 7 = 0

then λ− λ1 must divide λ3 − 7λ2 + 13λ− 7. The only nice way to find a solution is to hope we
can spot one, and the only way to do that is to try the divisors of 7 (the constant term). Those
divisors are 1, −1, 7 and −7.

For 1 we get
(λ3 − 7λ2 + 13λ− 7) |λ=1= 1− 7 + 13− 7 = 0

and so the remainder theorem says λ− 1 divides λ3 − 7λ2 + 13λ− 7. We can divide it in using
long division of polynomials

λ2 − 6λ + 7
λ− 1 λ3 − 7λ2 + 13λ − 7

λ3 − λ2

−6λ2 + 13λ
−6λ2 + 6λ

7λ − 7
7λ − 7

0
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So we have
λ3 − 7λ2 + 13λ− 7 = (λ− 1)(λ2 − 6λ+ 7)

and the roots of λ3 − 7λ2 + 13λ− 7 = 0 (our characteristic equation) are λ = 1 and the roots of
the quadratic λ2 − 6λ+ 7. Those roots of the quadratic are

λ =
6±

√
62 − 4(7)

2
=

6±
√
8

2
= 3±

√
8

4
= 3±

√
2

So we now have all the eigenvalues

λ = 1, λ = 3 +
√
2 and λ = 3−

√
2

as required.
So we are finished what was asked.
Notice that to find P so that A = P tDP we would need to find unit eigenvectors for each of

these three eigenvalues — so it would take quite a while. With the help of Mathematica, I can
tell you the answers. For λ = 1, the eigenvector is

− 1√
2
i+

1√
2
j,

for λ = 3 +
√
2 it is

1

2
i+

1

2
j+

1√
2
k

and for λ = 3−
√
2 it is

−1

2
i− 1

2
j+

1√
2
k

So if

P =

−
1√
2

1
2
−1

2
1√
2

1
2
−1

2

0 1√
2

1√
2

 and D =

1 0 0

0 3 +
√
2 0

0 0 3−
√
2


then A = PDP t.

3.1.10 Remark. Theorem 3.1.3 is quite useful because it is so simple to apply. Symmetric
matrices are easy to recognise. The fact that they can be expressed as diagonal matrices in a new
orthonormal basis is useful.

In the case n = 3, this theorem is often called the ‘Principal Axis Theorem’ because of an
interpretation it has in mechanics. In mechanics there is a symmetric matrix called the ‘inertia
matrix’ associated with a solid object and it has to do with rotating the object around axes through
the centre of mass. The axes where there will be no wobble or vibration are the axes in the
direction of the eigenvectors. The ‘Principal Axis Theorem’ says there are always 3 such axes
(though there could be more if the object is very symmetric).

The next topic is to do something similar for matrices that are not symmetric. In this case
things become more complicated because there is no longer a ‘Principal Axis Theorem’.
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3.2 Diagonalisable matrices
3.2.1 Definition. An n × n matrix A is called diagonalisable if there is an invertible matrix S
and diagonal matrix D (also n× n matrices) so that

A = SDS−1

The matrix A is called orthogonally diagonalisable if we can take S to be an orthogonal
matrix (so that S corresponds to what we had as P t before).

3.2.2 Remarks. (i) We’ve seen that the orthogonally diagonalisable matrices are exactly the
symmetric matrices A (those with A = At). That is what Theorem 3.1.3 tells us.

(ii) In the case where A is symmetric we take S = P where the columns of P are normalised
eigenvectors of A. That means the columns of S are an orthonormal basis made up of
eigenvectors.

(iii) In general if A = SDS−1, the columns of S must be eigenvectors for A.

If, say,

S =

u1 v1 w1

u2 v2 w2

u3 v3 w3


we don’t necessarily have u = u1i+u2j+u3k, v = v1i+v2j+v3k, w = w1i+w2j+w3k
perpendicular to each other (and there is no longer any great advantage in them being
normalised to have length 1).

We could explain what is going on with A = SDS−1 in terms of changing axes from the
usual ones to axes which are parallel to the vectors u, v and w but this brings in ideas that
are rather harder to follow. The new axes are no longer perpendicular axes and all we can
say is that they are in directions that use up all 3 dimensions — so no one is in the plane of
the other 2.

(iv) We can go about trying to write any square matrix as A = SDS−1 in much the same way
as we did before for the case of symmetric matrices.

Step 1 is to find the eigenvalues of A by solving the characteristic equation det(A−λIn) =
0. Things can go wrong at step 1. Even for 2 × 2 matrices, the quadratic equation we get
could have only 1 root (both roots the same) or the roots could be complex numbers.

Complex numbers should not be such a problem, and things certainly work more often if
we deal with comples matrices — matrices where the entries are allowed to be complex
numbers as well as real numbers. However, that would be another level of complication on
top of what we have done and I don’t want to tackle that. It is actually not that much more
difficult, but still it seems better not to go into it for this course.

If step 1 works out and it happens that we get n different real eigenvalues, then we can
succeed in finding D and S so that A = SDS−1. Take D to be the diagonal matrix with the
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eigenvalues along the diagonal and S to have the eigenvectors as its columns. (You need to
take the eigenvectors in the same order at the eigenvalues.)

(v) One case where the strategy works out quite nicely is for triangular matrices (upper or lower
triangular) with all the diagonal entries different.

Take for example

A =

1 2 3
0 4 5
0 0 6


The characteristic equation det(A− λI3) = 0 is very easy to solve in this case because

A− λI3 =

1 2 3
0 4 5
0 0 6

− λ
1 0 0
0 1 0
0 0 1

 =

1− λ 2 3
0 4− λ 5
0 0 6− λ


and so

det(A− λI3) = (1− λ)(4− λ)(6− λ)

Thus the eigenvalues of the (triangular) matrix A are

λ1 = 1, λ2 = 4 and λ3 = 6

There was nothing special about the numbers 1, 2 and 6. For triangular matrices the eigen-
values are always going to work out to be the entries along the diagonal.

To find S we need eigenvectors. So, for λ = 1 we need to row reduce [A − λI3 : 0] =
[A− I3 : 0], which is  0 2 3 : 0

0 3 5 : 0
0 0 5 : 0


Divide first row by 2:  0 1 3/2 : 0

0 3 5 : 0
0 0 5 : 0


Row 2 −3× Row 1:  0 1 3/2 : 0

0 0 1/2 : 0
0 0 5 : 0


Row 2 times 2:  0 1 3/2 : 0

0 0 1 : 0
0 0 5 : 0


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Row 3 −5× Row 2:  0 1 3/2 : 0
0 0 1 : 0
0 0 0 : 0


In equations we have {

v2 + 3
2
v3 = 0
v3 = 0

and that means v3 = 0 and v2 = 0 but v1 free. So (v1, v2, v3) = (1, 0, 0) makes up the first
column of S.

We won’t go through the similar calculations in detail but the results should be (2, 3, 0) for
λ = 4 and (16, 25, 10) for λ = 6. (Any multiples of these vectors would work just as well.)
So if

D =

1 0 0
0 4 0
0 0 6

 , S =

1 2 16
0 3 25
0 0 10


(columns of S are the eigenvectors) we have A = SDS−1.

(vi) There are very simple matrices that are not diagonalisable (and it does not always help to
allow complex numbers). One such example is

A =

[
0 1
0 0

]
We can work out its eigenvalues by looking at the characteristic equation, but according to
the logic of the example we have just done we know how it will turn out. The eigenvalues
are the diagonal entries (since A is upper triangular) and so we just get λ = 0. If you like
you can say that 0 is an eigenvalue twice.

So if we could write A = SDS−1 the diagonal matrix D has to have the eigenvalues along
the diagonal. In this case that means D has to be the zero matrix. But then SDS−1 works
out as zero, and that is not the same as A.

So this A is not diagonalisable.

(vii) Now for some comments to explain some reasons that diagonalisable matrices are handy.
At least it is handy if we already know S and D so that A = SDS−1 (with D diagonal as
usual).

It is very easy to calculate powers of A. Look first at A2. We have

A2 = AA = SDS−1SDS−1 = SD(S−1S)DS−1 = SDInDS
−1 = SDDS−1 = SD2S−1

A3 = A2A = SD2S−1SDS−1 = SD2(S−1S)DS−1 = SD2InDS
−1 = SD2DS−1 = SD3S−1

and it is not hard to see that for every power An we have

An = SDnS−1
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For small powers it is a minor convenience that powers of diagonal matrices are so easy to
calculate, but for big powers this is a major saving. If (say for the 3× 3 case)

D =

λ1 0 0
0 λ2 0
0 0 λ3


then

Dn =

λn1 0 0
0 λn2 0
0 0 λn3


and your calculator can find powers of numbers.

(viii) Here we discuss the exponential of a matrix, a square matrix.

First we recall briefly that the ordinary exponential ex of a numerical variable x can be
expressed by an infinite series

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·

and sometimes it is convenient to use the notation exp(x) to mean exactly the same as ex.

This kind of infinite sum needs to be defined using limits. So that series expression for ex

says

exp(x) = ex = lim
N→∞

1 + x+
1

2!
x2 +

1

3!
x3 + · · ·+ 1

N !
xN

A limit like this does not have to exist for every x. It is easy to see that the limit does exist
for x = 0 and e0 = 1, but for the exponential series it is known that the series converges
(quite quickly in fact) for every x.

By analogy with this series for ex, if A is an n× n matrix then we define

eA = lim
N→∞

In + A+
1

2!
A2 +

1

3!
A3 + · · ·+ 1

N !
AN

and we also write this as

exp(A) = eA = In + A+
1

2!
A2 +

1

3!
A3 + · · ·

(an infinite series again, but this time the terms to be added up are matrices).

It would be desirable to prove that this limit always exists, but we will not do it as it
becomes quite easy only with concepts that we won’t develop. What we can do is give
a fairly convincing way to see that eA makes sense if A is diagonalisable, and this also
contains a good way to calculate eA.
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Suppose A = SDS−1 is diagonalisable. We’ve already seen that Ak = SDkS−1 for all
exponents k = 1, 2, . . .. So we can write

In + A+
1

2!
A2 +

1

3!
A3 + · · ·+ 1

N !
AN

= SS−1 + SDS−1 +
1

2!
SD2S−1 +

1

3!
SD3S−1 + · · ·+ 1

N !
SDNS−1

= S(In +D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN)S−1

Now
lim
N→∞

In +D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN

is easy to calculate. Say we take n = 3 as an illustration and D =

λ1 0 0
0 λ2 0
0 0 λ3

. Then

In +D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN

=

1 0 0
0 1 0
0 0 1

+

λ1 0 0
0 λ2 0
0 0 λ3

+
1

2!

λ21 0 0
0 λ22 0
0 0 λ23

+ · · ·+ 1

N !

λN1 0 0
0 λN2 0
0 0 λN3


=

1 + λ1 +
1
2!
λ21 + · · ·+ 1

N !
λN1 0 0

0 1 + λ2 +
1
2!
λ22 + · · ·+ 1

N !
λN2 0

0 0 1 + λ3 + · · ·+ 1
N !
λN3


So now we can see what the limit of this is as N →∞ and we get

eD =

eλ1 0 0
0 eλ2 0
0 0 eλ3


From this it is a short step (which we will not justify totally) that we can multiply the limit
by S on the left and S−1 on the right to get

eA = SeDS−1 = S

eλ1 0 0
0 eλ2 0
0 0 eλ3

S−1

(whereA = SDS−1 andD is as above). This kind of calculation is valid for diagonalisable
matrices of any size (not just 3× 3 as we used for illustration).

In the next topic we will see that matrix exponentials can be used for solving differential
equations.
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3.3 Linear Differential Equations
We will take a rather restricted look at differential equations, aiming for an aspect where matrices
can be used effectively.

A first order linear differential equation with constant coefficients is an equation of the form

dy

dx
− ay = b

where a and b are constants. The unknown in a differential equation is a function y = y(x) and
the reason it is called a ‘differential equation’ is that the equation involves not just the values
of y (and possibly x) but also derivatives of the unknown function. We call this one first order
because the highest derivative that occurs is the first derivative dy/dx of the unknown function.
Later we will talk about second order equations which involve the second derivative d2y/dx2.
We won’t actually deal with higher order equations, but third order ones would have the third
derivative in them, and so on.

Sometimes these differential equations are called ‘ordinary differential equations’ (abbre-
viated ODE sometimes) to distinguish them from ‘partial differential equations’ (abbreviated
PDE). Both are important for many different applications, but we will not deal with PDEs at all
and what w say about ODEs is quite limited. Just to explain what a PDE is, it is an equation
where the unknown is a function of more than one variable and the equation involves ‘partial’
derivatives of the unknown function. In case you have not heard anything about partial deriva-
tives yet, here is a very very brief explanation.

We did discuss functions of more than one variable back at the start of this chapter, though we
moved fairly quickly to vector-valued (linear) functions of a vector variable. A vector variable is
the same as several scalar variables at once. As an example, we can have functions

y = f(x1, x2) = x41x2 + 3x21x
2
2 + x51 − x62

of two variables. The partial derivative of this with respect to the x1-variable is what you get
by differentiating the right hand side with respect to x1 while treating all the other variables as
constant (in this case only the variable x2 as there are only 2 variables). Another way to explain
it is that we fix some value (constant value) for x2 while we differentiate with respect to x1. The

notation for the partial derivative is
∂y

∂x1
and in the example it turns out to be

∂y

∂x1
= 4x31x2 + 6x1x

2
2 + 5x41 − 0

On the other hand the partial derivative with respect to x2 is

∂y

∂x2
= x41 + 6x21x2 + 0− 6x52

This brief explanation of how to calculate them is not enough to allow you to understand
the ideas around partial derivatives. But anyhow, a PDE is an equation that involves partial
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derivatives of an unknown function (as well as the function itself and the variables x1, x2 and
more if there are more than 2 variables involved).

We’ve said that the example equation at the start of this discussion should have constant
coefficients (a restriction that is not really necessary for this case) but we also said it was called
a linear equation. Let’s explain now what we mean by the word linear and why it is used at all.

The reason
dy

dx
− ay = b

is called linear is that the left hand side

dy

dx
− ay

depends on the unknown function y in a linear way. What we mean my this is that if we define
an operation (or transformation) on functions y = y(x) by

Ty =
dy

dx
− ay

then the transformation T has the same key properties we had in Theorem 2.5.1. That is

• T (y + z) = T (y) + T (z) (if y = y(x) and z = z(x) are functions); and

• T (ky) = kT (y) (for y = y(x) a function and k a constant).

Recall that we first introduced linear transformation f : Rn → Rm as arising from an m× n
matrix A by

f(x) = Ax.

Later we showed in Theorem 2.5.1 that the two ‘linearity’ properties were a way to distinguish
linear transformations from more general functions f : Rn → Rm. What we had in Theo-
rem 2.5.1 was a more abstract way of distinguishing linear transformations, one that is not tied
to the use of the standard coordinates, or the standard basis for Rn and Rm.

If you look in the book, you can see that there is a more abstract approach where one can
replace Rn and Rm by ‘vector spaces’ where you can add ‘vectors’ and multiply them by scalars.
In this more abstract approach, our

Ty =
dy

dx
− ay

would fit right in as just one example, and we would have a more complete explanation of why
we call it ‘linear’.

3.3.1 Method of integrating factors. We now explain how to find all the solutions of first order
linear equations

dy

dx
− ay = b

by a method called integrating factors. In fact the method can be applied even if a and b are
not constants but are allowed to be functions of x, but it is particularly easy to use for the case



Eigenvalues, etc 17

where a and b are constants. For the situation where we are going to bring matrices into our
considerations, the restriction to constant coefficients will be more crucial We now explain how
to find all the solutions of first order linear equations

dy

dx
− ay = b

by a method called integrating factors. In fact the method can be applied even if a and b are
not constants but are allowed to be functions of x, but it is particularly easy to use for the case
where a and b are constants. For the situation where we are going to bring matrices into our
considerations, the restriction to constant coefficients will be more crucial.

The method is to multiply the equation by

e
∫
−a dx = e−ax.

When we do that we get

e−ax
dy

dx
− ae−axy = be−ax

and the whole point of this trick is that the left hand side is now the derivative of a product. From
the product rule we have

d

dx

(
e−axy

)
= e−ax

dy

dx
− ae−axy

and so the equation we now have can be rewritten

d

dx

(
e−axy

)
= be−ax

So we get

e−axy =

∫
be−ax dx = − b

a
e−ax + C

with C some constant. Multiply now by eax on both sides to get

y = − b
a
+ Ceax

3.3.2 Example. Find all solutions of

dy

dx
− 5y = 3

Solution: Multiply by the integrating factor

e
∫
−5 dx = e−5x
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to get

e−5x
dy

dx
− 5e−5xy = 3e−5x

d

dx

(
e−5xy

)
= 3e−5x

e−5xy =

∫
3e−5x dx

= −3

5
e−5x + C

y = −3

5
+ Ce5x

Note that the solution involves a constant C which can be anything.

3.3.3 Remark. We say that we have found the general solution y for the differential equation
dy
dx
− 5y = 3. In an application, where we would want to know y precisely, we need some more

information to pin down y.
A fairly typical case is a case where we know one value of y in addition to the fact that y

satisfies the differential equation. This kind of problem is called an ‘initial value problem’. An
example would be to find y given that dy

dx
− 5y = 3 and y(0) = 0. We found above that y has to

have the general form y = −3
5
+Ce5x for some constant C, but then we can plug in x = 0 to see

that

0 = y(0) = −3

5
+ Ce0 = −3

5
+ C

and that tell us that C = 3/5. The solution to the initial value problem is then

y = −3

5
+

3

5
e5x.

3.3.4 Remark. A consequence of linearity of equations like

dy

dx
− ay = b (3.3.1)

is that there is a relationship between solutions of this equation and solutions of the associated
‘homogeneous equation’ where the right hand side is replaced by 0. That is with

dy

dx
− ay = 0 (3.3.2)

The relationship can be expressed in a few ways. One way is this. If we take one solution
y = y0 for (3.3.1) (the inhomogeneous equation), we know

dy0
dx
− ay0 = b (3.3.3)
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Now subtract (3.3.3) from (3.3.1) and rearrange the result using linearity to get

d

dx
(y − y0)− a(y − y0) = 0

What this says is that two solutions of the inhomogeneous equation (3.3.1) have a difference
y−y0 that is a solution of the associated homogeneous equation (3.3.2). Another way to say that
is that if we somehow know one ‘particular solution’ y0 for (3.3.1), then the general solution y
for (3.3.1) is

y = y0 + (general solution of homogeneous equation (3.3.2))

This gives a strategy for solving linear equations. It is not really so useful for these first order
linear equations because the method of integrating factors just works out all the solutions, but it
helps a lot with second order linear problems (which we will come to soon).

The strategy is this:

• somehow find one ‘particular’ solution for the inhomogeneous equation (by guesswork or
systematic guesswork this can often be done);

• look for the general solution of the associated homogeneous equation (with 0 on the right):

(This can be easier to deal with than having to cope with the right hand side at the same
time.)

• the general solution of the inhomogeneous equation is then

(particular solution) + (general solution of homogeneous equation)

3.3.5 Second Order Linear. We now move on to second order linear differential equations. We
will only deal with the case of constant coefficients (which makes things much easier) and we will
also discuss only the homogeneous case. The strategy we have just outlined about ‘particular’
solutions + general solutions of the associated homogeneous equation is a very common way to
approach these second order problems. So we will be dealing with most of the significant issues
by looking at the homogeneous case.

That means we will discuss equations of the type

d2y

dx2
+ b

dy

dx
+ cy = 0

where b and c are constants. We could allow for a constant coefficient in front of the second
derivative term. But, we can divide across by that coefficient to get an equation like the one
above. (Well we can do that if we are not dividing by 0. If the coefficient of d2y/dx2 was 0, then
we would have a first order problem, not a second order one.)

Now there is a trick to reduce to a first order problem, but at the expense of getting two
equations (a system of equations).
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The trick is to introduce a new name y1 for y and a temporary

y2 =
dy

dx
=
dy1
dx

Then
d2y

dx2
=

d

dx

(
dy

dx

)
=
dy2
dx

. We can then rewrite the second order equation as

dy2
dx

+ by2 + cy1 = 0

but we need to keep in mind the connection between y2 and y1 also. We get a system
dy1
dx

= y2
dy2
dx

+ by2 + cy1 = 0

or 
dy1
dx

= y2
dy2
dx

= −cy1 − by2

Using matrices we can write this system as a single equation between two column matrices[
dy1
dx
dy2
dx

]
=

[
y2

−cy1 − by2

]
and using matrix multiplication we can write that as[

dy1
dx
dy2
dx

]
=

[
0 1
−c −b

] [
y1
y2

]
Next we treat the unknown in this equation as a vector valued function

y = y(x) =

[
y1
y2

]
and we agree to say that differentiating such a function means differentiating each component.
That is we define

d

dx

[
y1
y2

]
=

[
dy1
dx
dy2
dx

]
Now we can write our matrix equation (which came about from the system of two equations) as

a differential equation for the vector-valued unknown y(x) =

[
y1
y2

]
. We get

dy

dx
=

[
0 1
−c −b

]
y



Eigenvalues, etc 21

If we use A to stand for the matrix

A =

[
0 1
−c −b

]
then our equation is

dy

dx
= Ay

To make it look even more like what we had before we write this

dy

dx
− Ay = 0 (3.3.4)

This looks so temptingly similar to the first order linear (homogeneous) equation

dy

dx
− ay = 0

that we might like to try and use an integrating factor method to solve the new version. When a is
a scalar we multiplied by the integrating factor e

∫
−a dx = e−ax and so maybe we should multiply

across by e−Ax.
Since we conveniently discussed exponentials of matrices already, we can makes sense of

e−Ax. The order of matrix multiplication matters a lot and we multiply dy
dx
−Ay = 0 by e−Ax on

the left. As e−Ax is a 2× 2 matrix and the equation is an equality of 2× 1 column matrices, we
have to multiply on the left. We get

e−Ax
dy

dx
− e−AxAy = e−Ax0

or

e−Ax
dy

dx
− e−AxAy = 0

It turns out to be the case that

d

dx
e−Ax = −e−AxA

if we interpret differentiation of a matrix-valued function of x to mean differentiation of each
entry separately.

Why is that true? Well we are not really in a position to show it in general, but it is easy

enough to see that it works out when A is replaced by a diagonal matrix D. If D =

[
λ1 0
0 λ2

]
then

e−Dx = exp

([
−λ1x 0
0 −λ2x

])
=

[
e−λ1x 0
0 e−λ2x

]
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So

d

dx
e−Dx =

[
d
dx
e−λ1x 0
0 d

dx
e−λ2x

]
=

[
−λ1e−λ1x 0

0 −λ2e−λ2x
]

= −
[
e−λ1x 0
0 e−λ2x

] [
λ1 0
0 λ2

]
= −e−DxD

It is possible to come up with a modification of this argument to show d
dx
e−Ax = −e−AxA when

A = SDS−1 is diagonalisable, but actually it is true for every square matrix A.
Using d

dx
e−Ax = −e−AxA we can rewrite our equation (3.3.4) as

e−Ax
dy

dx
+

d

dx

(
e−Ax

)
y = 0 (3.3.5)

What we need now is a product rule for differentiating matrix products. We will not check
it works, but it is true that if U = U(x) and V = V (x) are matrix functions so that the matrix
product UV makes sense, then

d

dx
(UV ) =

(
dU

dx

)
V + U

dV

dx

It is important to keep the order here so that U always stays to the left of V .
Using this product rule, we can rewrite (3.3.5) as

d

dx

(
e−Axy

)
= 0

and it should be clear that the only vector functions that have derivative 0 =

[
0
0

]
are constants.

So we get

e−Axy = constant vector =

[
c1
c2

]
To find y, we multiply by the inverse matrix of e−Ax, which turns out to be eAx. We get

y =

[
y1
y2

]
= eAx

[
c1
c2

]
(3.3.6)

as the solution of our system of differential equations (3.3.4).
Of course we should work this out further so it does not involve the matrix exponential. Let

us assume (to make our life easier) that we are always in the case where A is diagonalisable. So

we can write A = SDS−1 with D =

[
λ1 0
0 λ2

]
diagonal. Then

Ax = SDS−1x = S(Dx)S−1
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(because x is a scalar) and Dx =

[
λ1x 0
0 λ2x

]
diagonal. We have then

eAx = SeDxS−1 = S

[
eλ1x 0
0 eλ2x

]
S−1

When we go to use this in (3.3.6) the first thing will be to multiply out

S−1
[
c1
c2

]
It will make life easier for us if we just write the result as[

α1

α2

]
= S−1

[
c1
c2

]
for two new constants α1 and α2. So now out solution (3.3.6) comes to

y =

[
y1
y2

]
= eAx

[
c1
c2

]
= S

[
eλ1x 0
0 eλ2x

] [
α1

α2

]
= S

[
α1e

λ1x 0
0 α2e

λ2x

]
Recall now, finally, that the columns of S are eigenvectors for A belonging to the eigenvalues λ1
and λ2. So S has the form

S =
[
v1 v2

]
where v1 and v2 are the eigenvectors written as columns. That means that the solution works out
as

y = α1e
λ1xv1 + α2e

λ2xv2

We now summarise what all these calculations show:

3.3.6 Theorem. Assume that A =

[
a11 a12
a21 a22

]
is a diagonalisable matrix, with eigenvalues λ1

and λ2 and corresponding eigenvectors v1 and v2. Then the solutions to the system of linear
differential equations 

dy1
dx

= a11y1 + a12y2
dy2
dx

= a21y1 + a22y2

are given by

y =

[
y1
y2

]
= α1e

λ1xv1 + α2e
λ2xv2

where α1, α2 are arbitrary constants.
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3.3.7 Example. We did start with a second order equation

d2y

dx2
+ b

dy

dx
+ cy = 0

and we rewrote it as a system
dy

dx
=

[
0 1
−c −b

]
y

where

y =

[
y1
y2

]
=

[
y

dy/dx2

]
According to the above, we need the eigenvalues and eigenvectors of the matrix

A =

[
0 1
−c −b

]
So we should look at the characteristic equation det(A− λI2) = 0. We have

A− λI2 =
[
0 1
−c −b

]
− λ

[
1 0
0 1

]
=

[
−λ 1
−c −b− λ

]
and so

det(A− λI2) = −λ(−b− λ) + c = λ2 + bλ+ c

Notice then the close similarity between the differential equation and the characteristic equa-
tion. Replace the second derivative term by λ2, the derivative term by λ and the y term by 1.

To be specific we take the example

d2y

dx2
− 5

dy

dx
+ 4y = 0

so the the characteristic equations is

λ2 − 5λ+ 4 = 0.

This factors as (λ− 1)(λ− 4) = 0 and so the eigenvalues are λ = 1 and λ = 4.

According to the recipe we also need the eigenvectors. We might say v =

[
v1
v2

]
for λ = 1

and w =

[
w1

w2

]
for λ = 4. Then we get

[
y
dy
dx

]
=

[
y1
y2

]
= α1e

x

[
v1
v2

]
+ α2e

4x

[
w1

w2

]
We don’t really need to work out the eigenvectors in this case because we can see that

y = α1v1e
x + α2w1e

4x
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and we can just regard α1v1 and α2w1 as some constants. We get

y = C1e
x + C2e

4x

for constants C1 and C2, where λ1 = 1 and λ2 = 4 are the roots of the equation λ2− 5λ+ 4 = 0
that comes from the equation.

It is worth pointing out though that we have ignored the possibility that the quadratic might
have complex roots (or just one root).

3.3.8 Example. Here is a somewhat applied example.
Two competing species live on the same small island and each one affects the growth rate of

the other (by competing for the same food, say). If thir populations at time t are x1(t) and x2(t),
a model for their growth rates says{

x′1(t) = −3x1(t) + 6x2(t)
x′2(t) = x1(t)− 2x2(t)

At time t = 0, x1(0) = 500 and x2(0) = 200.
Find x1(t) and x2(t).

Solution: We can write the model in matrix form as[
x′1(t)
x′2(t)

]
=

d

dt

[
x1(t)
x2(t)

]
=

[
−3 6
1 −2

] [
x1(t)
x2(t)

]

We need the eigenvalues and eigenvectors for A =

[
−3 6
1 −2

]
in order to write down the general

solution of this system of first order linear differential equations (and later we need to use the
information about x1(0) and x2(0) to find the constants).

We have

A− λI2 =
[
−3 6
1 −2

]
− λ

[
1 0
0 1

]
=

[
−3− λ 6

1 −2− λ

]
and so

det(A− λI2) = (−3− λ)(−2− λ)− 6 = (λ+ 3)(λ+ 2)− 6 = λ2 + 5λ+ 6− 6 = λ(λ+ 5)

The eigenvalues are λ1 = 0 and λ2 = −5.
To find the eigenvalue for λ1 = 0 we should row reduce [A : 0]. The answer should be the

vector
[
2
1

]
.

For λ2 = −5, we have A− λ2I2 = A+ 5I2 =

[
2 6
1 3

]
and we should row reduce

[
2 6 : 0
1 3 : 0

]
→
[
1 3 : 0
1 3 : 0

]
→
[
1 3 : 0
0 0 : 0

]
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So that eigenvector is
[
−3
1

]
.

The general solution is then

[
x1
x2

]
=

[
x1(t)
x2(t)

]
= α1e

0

[
2
1

]
+ α2e

−5t
[
−3
1

]
=

[
2α1 − 3α2e

−5t

α1 + α2e
−5t

]

If we put t = 0 we are supposed to get

[
500
200

]
=

[
x1(0)
x2(0)

]
=

[
2α1 − 3α2

α1 + α2

]

We then have 2 simultaneous equations to solve for α1 and α2. We could set that up as a matrix
to be row reduced, but anyhow the solution is α1 = 220, α2 = −20.

So the answer to the example is

x1(t) = 440 + 60e−5t

x2(t) = 220− 20e−5t

(Aside: I’m not sure how realistic the model was but maybe it is. As time passes, that is as t
get large and positive, limt→∞ e

−5t = 0 and the population will almost become (440, 220). For
negative t there is a time when x2(t) < 0 and that can’t be right.)

3.4 Least square fit

We now discuss a topic that is rather important for applications.
Suppose we do an experiment and find some data points that we know (from the theory of

the experiment) are supposed to lie on a line. Say we found n data points (x1, y1), (x2, y2),
. . . (xn, yn) and they are supposed to lie on a line y = mx+ c. How do we find the right line?

If we had two points we would just find the line through the two points, but we will often
have more than two data observations and (unless we fiddled the data) it is unlikely they will be
on any one line. What then is the ‘best’ estimate of the line?

Well, that does depend on what you mean by ‘best’ but the least squares approach is often
considered to be an appropriate interpretation of best. What it means is to choose the line that
makes the sum of the square of the vertical distance from the data points to the line as small as
possible. Here is a picture that is supposed to show the idea. The blobs represent 4 data points
and the line should be so that the sum of the squares of the vertical segments joining the blobs to
the line is smaller than for any other line.
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This is not the only interpretation of ‘best’ that could be considered. It is reasonably appro-
priate if the data is such that the x-values x1, x2, . . . , xn are correct while the experimental errors
are in the measurements of the y-values y1, y2, . . . , yn. The idea is that the ‘correct’ y-values are
y∗1, y

∗
2, . . . , y

∗
n and that these are so that the ‘corrected’ data points

(x1, y
∗
1), (x2, y

∗
2), . . . , (xn, y

∗
n)

lie on the ‘correct’ line. Moreover the most likely line is the one where we should make the
smallest overall correction to the data — that is the one that make

(y1 − y∗1)2 + (y2 − y∗2)2 + · · ·+ (yn − y∗n)2

as small as possible.
We take the line as y = mx+ c (so c is the constant term and m is the coefficient of x or the

slope). If all the data points were on a line, it would be the line that solved all the equations

mx1 + c = y1

mx2 + c = y2
...

mxn + c = yn

In matrix form we can write this as 
x1 1
x2 1
...
xn 1


[
m
c

]
=


y1
y2
...
yn


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or
XL = y

where we use the notation

X =


x1 1
x2 1
...
xn 1

 , L =

[
m
c

]
and y =


y1
y2
...
yn


As we said already, once n > 2 we have too many equations for just 2 unknowns m and c.

There is very little chance that there is any solution for L. The approach is to modify y to get y∗

so that we do get a solution to
XL = y∗

and
‖y − y∗‖2 = (y1 − y∗1)2 + (y2 − y∗2)2 + · · ·+ (yn − y∗n)2

is as small as possible.
We’ll take n = 3 for the purpose of explaining how that is done. We need some understanding

of where we are allowed to take y∗ so as to make XL = y∗ solvable. We can write

XL =

x1 1
x2 1
xn 1

[m
c

]
= m

x1x2
xn

+ c

11
1


What we can say then is that as m and c change we always find that XL lies in the plane in space
R3 through the origin and containing the two vectorsx1x2

xn

 = x1i+ x2j+ x3k and

11
1

 = i+ j+ k

So the best choice of y∗ will be the point in that plane you get by dropping a perpendicular from
y onto the plane. (That will give the point y∗ on the plane closest to y.)

We can go about calculating that point, but there is a trick to avoid that. The difference y−y∗
should be a vector perpendicular to the plane. So y−y∗ is perpendicular to both x1i+x2j+x3k
and to i+ j+ k. We can write that in matrix notation as[

x1 x2 x3
1 1 1

]
(y − y∗) =

[
0
0

]
= 0

and that is just X t(y − y∗) = 0. So we find that

X ty = X ty∗

So instead of finding y∗ and then solving

XL = y∗
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we multiply this equation by X t on the left. That gives

X tXL = X ty∗

which is the same as
X tXL = X ty

Now X tX is just a 2× 2 matrix and X ty is a 2× 1 matrix. We are down to 2 equations in 2
unknowns m and c. They are known as the normal equations.

Summary: To find the line y = mx+ c that is the best least squares fit to the data points

(x1, y
∗
1), (x2, y

∗
2), . . . , (xn, y

∗
n)

solve the normal equations
X tXL = X ty

where

X =


x1 1
x2 1
...
xn 1

 , L =

[
m
c

]
and y =


y1
y2
...
yn


3.4.1 Example. Find the equation of the line that is the best least squares fit to the data points

(2, 1), (5, 2), (7, 3), (8, 3)

Solution: We take

X =


x1 1
x2 1
...
xn 1

 =


2 1
5 1
7 1
8 1

 , L =

[
m
c

]
and y =


y1
y2
...
yn

 =


1
2
3
3


and solve the normal equations X tXL = X ty.

We need to calculate

X tX =

[
2 5 7 8
1 1 1 1

]
2 1
5 1
7 1
8 1

 =

[
142 22
22 4

]

and

X ty =

[
2 5 7 8
1 1 1 1

]
1
2
3
3

 =

[
57
9

]
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And now solve [
142 22
22 4

] [
m
c

]
=

[
57
9

]
We can do that by row reducing[

142 22 : 57
22 4 : 9

]
→
[

1 11/71 : 57/142
22 4 : 9

]
→
[
1 11/71 : 57/142
0 42/71 : 12/71

]
→
[
1 11/71 : 57/142
0 1 : 2/7

]
→
[
1 0 : 5/14
0 1 : 2/7

]
So m = 5/14 and c = 2/7. The line is

y =
5

14
x+

2

7

and here is a picture of the line with the points

3.5 Markov Matrices
One thing we could have mentioned earlier is that a matrix always has the same eigenvalues as
its transpose. If A is an n×n (square) matrix we do know (from 1.4 (iv)) that det(At) = det(A).
It follows quite easily that A and At have the same characteristic equation. The reason is that

At − λIn = At − λI tn = (A− λIn)t

and so det(At − λIn) = det(A− λIn). So the characteristic equation det(At − λIn) = 0 is the
same equation as det(A− λIn) = 0.

One place where this little fact is useful is in studying Markov matrices. Markov matrices
are square matrices which have

• all entries ≥ 0, and
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• in each column, the sum of the entries in the column is 1

This is a 3× 3 Markov matrix

A =

0.2 0 0.4
0.2 0.5 0.1
0.6 0.5 0.5


If we take the transpose of this Markov matrix and multiply it by the column of all 1’s, we find

At

11
1

 =

0.2 0.2 0.6
0 0.5 0.1
0.4 0.1 0.5

11
1

 =

11
1


(because the row sums in the transpose are all equal 1).

What this shows is that if A is a Markov matrix, then the column of all 1’s is an eigenvector
ofAt with the eigenvalue 1. So there must be an eigenvector for the matrixA with the eigenvalue
1, that is a vector v with

Av = v

That vector v fixed by A is rather important in considerations of Markov matrices. There are
many applications of Markov matrices (for example in finding what happens with genetic types
over many generations) but we will stop our study of linear algebra in this module here, without
looking into these interesting topics!

TO BE checked
Richard M. Timoney March 13, 2014
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