
1S11 (Timoney) Tutorial sheet 11
[December 11 – 14, 2012]

Name: Solutions

1. Convert (1010011001)2 to octal and (3146)8 to binary using the “3 binary for 1 octal digit”
rule.

Solution:

(1010011001)2 = (1 010 011 001)2 = (001 010 011 001)2 = (1231)8

(3146)8 = (011 001 100 110)2 = (011001100110)2 = (11001100110)2

2. Convert the (base ten) number 923 to octal (by repeated division by 8).

Solution:

Remainder
8 923

115 3
8 115

14 3
8 14

1 6
8 1

0 1

So 923 is (1633)8.

Then convert it to binary (using the “3 binary for 1 octal digit” rule)

Solution:
(1633)8 = (001 110 011 011)2 = (1110011011)2

and then from that to hexadecimal.

Solution:
(1633)8 = (0011 10011011)2 = (39b)16

3. Find the mantissa and exponent (both in binary) for the binary floating point number
(101011.0111)2 when it is converted to (binary) scientific notation.

Solution:
(101011.0111)2 = (1.010110111)2 × 25

The mantissa is 1.010110111 and the exponent is 5, which is 101 in binary.



4. With the aid of the following table, show how the integers 13 and −14 would be converted
to a bit pattern (zeros and ones) in a computer with 32 bit integers.

13 . . .
−14 . . .

Bit position: 1 2 . . . 27 28 29 30 31 32

Solution:

13 0 0 . . . 0 0 1 1 0 1
−14 1 1 . . . 1 1 0 0 1 0

Bit position: 1 2 . . . 27 28 29 30 31 32

5. Convert
23

5
to binary.

Solution: First
23

5
= 4 +

3

5
and 4 = (100)2. We concentrate on the fractional part

3

5
.

2



Imagine the binary expansion as

3

5
= (0.b1b2b3 . . .)2

Double
6

5
= (b1.b2b3b4 . . .)2

Integer parts
b1 = 1

Fractional parts
1

5
= (0.b2b3b4 . . .)2

Double
2

5
= (b2.b3b4b5 . . .)2

Integer parts
b2 = 0

Fractional parts
2

5
= (0.b3b4b5 . . .)2

Double
4

5
= (b3.b4b5b6 . . .)2

Integer parts
b3 = 0

Fractional parts
4

5
= (0.b4b5b6 . . .)2

= (0.b1b2b3 . . .)2

Double
8

5
= (b4.b5b6b7 . . .)2

Integer parts
b4 = 1

Fractional parts
3

5
= (0.b5b6b7 . . .)2

= (0.b1b2b3 . . .)2

3



Thus the pattern repeats, b5 = b1, b6 = b2, etc and so 3
5
= (0.1001)2. The answer is

23

5
= 4 +

2

7
= (100.1001)2

6. Suppose a computer was built that used 48 bits to store each floating point number, with 1
bit for the sign, 16 bits for the exponent (giving a range of exponents from −215 to 215−1)
and the remaining 31 bits for the mantissa. Roughly (using standard base ten exponential
notation) what would be the biggest positive number the computer could store using this
system? [Hint: 216 = 65536.]

Solution: The largest positive number would be (1.111 . . . 1)2 × 232768−1 with 31 ones in
the mantissa (and largest possible exponent 215 − 1 = 32768− 1 = 32767. So just about

2× 232768−1 = 232768 = 28 × 232760 = 28 × (210)3276

∼= 256× (103)3276 = 2.56× 102 × 109828 = 2.56× 109830

And what would be the smallest positive number?

Solution: The smallest would be 1 × 2−32768 (smallest mantissa 1 and most negative ex-
poneint −215 = −32768).

2−32768 = 22 × 2−32770 = 22 × (210)−3277 ∼= 22 × (103)−3277 = 42 × 10−9831

Richard M. Timoney

4


