
Chapter 8. Determinants

This material is in Chapter 2 of Anton Linear Algebra.
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8.1 Introductory remarks

The determinant of a square matrix A is a number det(A) associated with the matrix A, and one
of its main properties is that A−1 exists exactly when det(A) 6= 0.

Unfortunately the calculation of det(A), and the explanation of what it is, turns out to be
tricky. Certainly it is harder than the trace of A. Very vaguely det(A) is the number you end up
dividing by when you compute A−1 (and that ties in with the fact that you can’t divide by it if it
is zero, so that the inverse matrix of A won’t make sense if det(A) = 0).

We can make that rather less vague for 2× 2 matrices

A =

[
a11 a12
a21 a22

]
In this case you can calculate A−1 as a formula. You can do it either by row-reducing

[A | I2] =
[
a11 a12 : 1 0
a21 a22 : 0 1

]
and you should end up with

A−1 =
1

a11a22 − a21a21

[
a22 −a12
−a21 a11

]
Having got this formula somehow, you could also check that it works out. (To do that,

multiply the supposed A−1 by A to see you do indeed get I2.)

8.1.1 Definition. For a 2 × 2 matrix A =

[
a11 a12
a21 a22

]
, the determinant of A is defined to be the

number
det(A) = a11a22 − a21a21
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In words, this is the product of the two diagonal entries minus the product of the two off-
diagonal entries.

It is possible to work out a formula for the inverse of a 3× 3 matrix, though it would is quite
a bit more messy. There are a number of ways to say what det(A) is for matrices that are larger
than 2 × 2. I think there is no one way that is really neat. All the approaches either use a lot of
ancillary theory, or else have some significant drawback. The way we will choose now is easy
enough to explain, but tricky enough to use as a way of showing that determinants do what they
are meant to do. In other words proofs are not so nice when we start the way we are going to do,
but we won’t really notice that problem because we will skip the proofs!

8.2 Cofactor expansion approach to determinants
A quick way to define a determinant is via what is called cofactor expansion along the first row.
For 3× 3 matrices this means

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
In words the idea is to multiply each entry of the first row times the determinant of the matrix you
get by covering over the first row and the column of the entry. Then add these up with alternating
signs +, −, + . . . .

When we start with a 3× 3 matrix A, we end up with det(A) in terms of 2× 2 determinants.
And we already know how to evaluate them.

For the 4× 4 case, this idea works out like this

det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = a11 det

a22 a23 a24
a32 a33 a34
a42 a43 a44

− a12 det

a21 a23 a24
a31 a33 a34
a41 a43 a44



+a13 det

a21 a22 a24
a31 a32 a34
a41 a42 a44

− a14 det

a21 a22 a23
a31 a32 a33
a41 a42 a43


You should note the alternating signs and that what we now end up with is 4 determinants of size
3 × 3 to calculate. If we expand each of these via cofactors along the first row, we end up with
12 = 4× 3 determinants of size 2× 2 to calculate.

If we use the same approach for 5 × 5 determinants, we end up with even more work to do.
So this method may be simple enough in principle but it is laborious. We will soon explain a
more efficient approach for large matrices.

8.3 A formula for determinants
While the above explanation is fine, it is what is called a reduction formula for a determinant.
It says how to work out a determinant (of an n × n matrix A with n ≥ 3) in terms of smaller
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determinants. When you keep using the reduction formula enough you get down to 2× 2 deter-
minants and we have a nice tidy formula for them. You might like to have a formula for bigger
determinants, not a reduction formula.

Such a thing is available and is described in many standard books (but not in the latest edition
of the book by Anton). One snag with it is that it requires a bit of theory to explain how it works.
I’ll outline it below.

In fact the cofactor expansion idea (the reduction formula) works out for 2× 2 determinants
as well. If you wanted to use it on a 2 × 2 determinant, it would tell you the answer in terms of
1× 1 determinants! It would say

det

[
a11 a12
a21 a22

]
= a11 det[a22]− a12 det[a21]

and we might have to worry a bit about what the 1× 1 determinants det[a22] and det[a21] might
mean. Well, a 1× 1 matrix has just one entry, one number in it. If you want to be fussy you can
insist that a 1 × 1 matrix is a matrix and an number is a scalar, not the same as a matrix. But
actually there is rarely a reason to be so fussy and we can usually safely ignore the difference
between a 1 × 1 matrix and a scalar. The determinant of a 1 × 1 matrix is just that scalar. Then
the reduction formula works out the right determinant for 2× 2 matrices!

Technically, we should have said what determinants of 1 × 1 matrices are and starting with
2 × 2 meant that we were not being totally complete. So we’ve filled in that small detail now,
though it is not real important.

Back to a formula for general determinants. If you think about it for a while, it is not hard to
see that what you get when you expand out det(A) completely is a sum of products of entries of
A times ±1. In fact what happens is that, if A is an n × n matrix, then all products of n entries
of A show up which satisfy the restriction that the product contains just one entry from each row
of A and one from each column. This is kind of apparent from the cofactor expansion approach.
At the beginning we get an entry from the first row times a determinant of a matric where the
first row is no longer there (and the column of the entry you have is also no longer present in the
smaller determinant).

By arguing in this way, you can establish that what you would get if you multiplied out all
the reduction formulae for

det


a11 a12 · · · a1n
a21 a22 a2n

... . . .
an1 an2 ann


would be a big sum of terms of the form

±a1j1a2j2 · · · anjn

where j1, j2, . . . , jn are all of the n column numbers in some order.
So j1, j2, . . . , jn must be all n of the column numbers 1, 2, . . . , n, but not necessarily in that

order. In fact all possible orders appear. The possible way to reorder 1, 2, . . . , n are called the
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permutations of these n numbers. It is possible to see fairly easily that the total number of these
permutations is a number called ‘n factorial’. We write in as n! and it is the product of the
numbers 1, 2, . . . , n.

n! = n(n− 1)(n− 2) · · · (3)(2)(1)

So this approach gives a formula for the determinant, a formula with n! terms. One snag is
that n! gets big pretty fast.

3! = 6, 5! = 120, 10! = 3628800

So for a 10 × 10 matrix this formula would have more than 3.6 million terms, a lot. Even for
5× 5, you’d have more than 100 terms, each involving a product of 5 terms.

Then there is the problem of which terms get a plus sign and which get a minus. There is a
theory about this, and it comes down to something called the ‘sign’ of a permutation. It would
be a digression for us to try and explain what that is in a satisfactory way. So here is a quick
explanation. Starting with a permutation

j1, j2, . . . , jn

of 1, 2, . . . , n, (so that j1, j2, . . . , jn are all the first n whole numbers written in some order), we
are going to write down a matrix called the matrix for this permutation. In each row (and column)
the permutation matrix has just one single entry equal to 1, all the others are 0. To be specific, in
row number i, there is a 1 in column ji, and zeros elsewhere. (Another way to say it is that there
are entries = 1 at the positions (i, ji) for i = 1, 2, . . . , n, but every other entry is 0.) The sign of
the permutation is the same as the determinant of its permutation matrix.

Well, that is a true statement, but it is a bit unsatisfactory. Our long formula for a determinant
still has some determinants in it, the ones that give the ±1 signs.

There is a way to say how the whole formula works out for 3 × 3 matrices, and it is a fairly
satisfactory way of working out 3 × 3 determinants. The drawback is that it does not extend to
bigger determinants in any very similar way.

Starting with a 3× 3 matrix a11 a12 a13
a21 a22 a23
a31 a32 a33


write it down with the first two columns repeated

a11

""

a12

""

a13

""||

a11

||

a12

||
a21 a22

|| ""

a23

|| ""

a21

|| ""

a22

a31 a32 a33 a31 a32
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Add the products diagonally to the right and subtract those diagonally to the left as indicated by
the arrows

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33

Notice that there are the correct number of terms here (3! = 6). And each product of 3 has
one entry from each row, one entry from each column.

As mentioned above, this method of repeating the first and second columns does not work
for sizes apart from 3× 3, and there is nothing really like this for 4× 4 or bigger matrices. The
cofactor expansion method does work for any size of (square) matrix.

8.4 Properties of determinants
Here are the key properties of determinants. We’ll explain why they are true in the case of 2× 2
determinants, and give short shift to the explanations of why these properties still work for n×n
determinants.

(i) det(I2) = 1

This is pretty easy to see.

(ii) det(AB) = det(A) det(B)

Proof. We should show that this is true for any 2 × 2 matrices A and B, without knowing
what the entries are in the matrices. What we do is write out the matrices

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
, AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
Then multiply out

det(AB) = (a11b11 + a12b21)(a21b12 + a22b22)− (a11b12 + a12b22)(a21b11 + a22b21)

and
det(A) det(B) = (a11a22 − a12a21)(b11b22 − b12b21)

to show that the answers are the same.

It is not really hard to do, though maybe not profitable to write the remaining steps out for
you. You might like to convince yourself that it does work out as claimed. Doing it for
yourself is more likely to convince you that it works.

(iii) det(A−1) =
1

det(A)
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Proof. Using the previous result

det(A−1) det(A) = det(A−1A) = det(I2) = 1

and so det(A−1) = 1/ det(A).

(iv) det(At) = det(A)

This is not at all hard (for the 2× 2 case).

(v) The determinants of elementary matrices are as follows

1′. E the elementary matrix for the row operation “multiply row 1 by k 6= 0”

E =

[
k 0
0 1

]
, det(E) = k.

1′′. E the elementary matrix for the row operation “multiply row 2 by k 6= 0”

E =

[
1 0
0 k

]
, det(E) = k.

2′. E the elementary matrix for the row operation “add k times row 2 to row 1”

E =

[
1 k
0 1

]
, det(E) = 1.

2′′. E the elementary matrix for the row operation “add k times row 1 to row 2”

E =

[
1 0
k 1

]
, det(E) = 1.

3. E the elementary matrix for the row operation “swop rows 1 and 2”

E =

[
0 1
1 0

]
, det(E) = −1.

For general n× n determinants, all these statements remain true, when suitably phrased.

8.4.1 Lemma. The determinants of elementary matrices are as follows

1. E the elementary matrix for the row operation “multiply a row by k 6= 0” has det(E) = k.

2. E the elementary matrix for the row operation “add k times one row to a different row”
has det(E) = 1.

3. E the elementary matrix for the row operation “swop two specified rows” has det(E) =
−1.

This leads us to a way to calculate n × n determinants. Starting with the matrix A, do row
operations on A to row reduce A. At the first row operation we are replacing the matrix A by
EA for some elementary matrix A. So the determinant of the matrix we have changes to

det(EA) = det(E) det(A)
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We’ve seen that det(E) is easy to figure out. So it is quite easy to keep track of the changes in
the determinant as we do each row operation. We’ll organise this better next.

If we keep doing row operations, keeping track of how the determinant changes as we go
along, we will get to an upper triangular matrix and we can say this:

8.4.2 Lemma. If A is upper triangular or if A is lower triangular then det(A) is the product of
the diagonal entries.

Proof. For a lower triangular matrix like
a11 0 0 0
a21 a22 0 0
a31 a32 a32 0
a41 a42 a42 a44


it is quite easy to see that expanding along the first row gives a11 times some determinant (in fact
the determinant of a lower triangular 3 × 3 matrix in this case) plus zero. An expanding further
we just get the product of the diagonals.

For the upper triangular case we could relay on the fact that the transpose will be lower
triangular (and has the same determinant and the same diagonal entries). So for example

det


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 = det


a11 0 0 0
a12 a22 0 0
a13 a23 a33 0
a14 a24 a34 a44

 = a11a22a33a44

This is not a fully correct proof as we have not dealt with arbitrary sized matrices, but it
should be enough to explain the idea for the general case.

8.4.3 Theorem. (Simplification rules and properties of determinants) Let A be an n× n matrix
throughout.

(i) Adding a multiple of one row of A to another row results in a matrix with unchanged
determinant.

(ii) Factoring a scalar k 6= 0 out from a single row of A divides the determinant by k. That is

det



a11 a12 · · · a1n
a21 a22 a2n

...
ai1 ai2 · · · ain
...

an1 an2 · · · ann


= k det



a11 a12 · · · a1n
a21 a22 a2n

...
ai1/k ai2/k · · · ain/k

...
an1 an2 · · · ann


(iii) Swapping two rows of A changes the determinant by a factor −1.
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(iv) An efficient way to work out det(A) is to use Gaussian elimination to row reduce A to
row-echelon form, keeping track of how the determinant changes after each row operation
(see properties (i) – (iii)). Notice that the row-echelon form will be upper triangular with
either all 1’s on the diagonal or some diagonal entries are 0 (so that the determinant of the
row-echelon form is 1 in the case where the diagonal entries are all 1, which happens when
A is invertible, 0 othewise).

Proof. The first 3 rules follow from what we said already about determinants of products and
determinants of elementary matrices.

For (ii) it may be a bit confusing to see it, but notice that

a11 a12 · · · a1n
a21 a22 a2n

...
ai1 ai2 · · · ain
...

an1 an2 · · · ann


= E



a11 a12 · · · a1n
a21 a22 a2n

...
ai1/k ai2/k · · · ain/k

...
an1 an2 · · · ann


where E is the diagonal elementary matrix with k at position (i, i) and 1’s in the other diagonal
places (the elementary matrix for the row operation that multiplies row i across by k).

As for the efficiency claim, working out the determinant directly by expanding will typically
take around n! (multiplication) operations, whereas Gaussian elimination will take more like
n3/3. We mentioned already that 10! is 3.6 million and 103 is ‘only’ a thousand. For n that is
any way large n! is prohibitive, while n3/3 is much smaller.

8.4.4 Examples. 1. Find det

0 1 5
1 2 4
4 5 7

 via row reduction.

det

0 1 5
1 2 4
4 5 7

 = − det

1 2 4
0 1 5
4 5 7


= − det

1 2 4
0 1 5
0 −3 −9


= − det

1 2 4
0 1 5
0 0 6


= −6 det

1 2 4
0 1 5
0 0 1

 = −6
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2. Show det

 1 1 1
x y z
x2 y2 z2

 6= 0 if x, y and z are all different.

(Notice that the determinant would be zero if any two of x, y and z were equal. In this case
the matrix would have two identical columns, and so determinant zero.)

To solve this we will first transpose the matrix and then use row operations on the transpose.

det

 1 1 1
x y z
x2 y2 z2

 = det

1 x x2

1 y y2

1 z z2


= det

1 x x2

0 y − x y2 − x2

1 z z2


= det

1 x x2

0 y − x y2 − x2

0 z − x z2 − x2


= det

1 x x2

0 y − x (y − x)(y + x)
0 z − x (z − x)(z + x)


= (y − x) det

1 x x2

0 1 y + x
0 z − x (z − x)(z + x)


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 1 z + x


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 0 z + x− (y + x)


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 0 z − y


= (y − x)(z − x)(z − y)

If x, y and z are all different, then all 3 factors in the determinant are different from 0. So
their product is not zero.

By the way, this determinant we just worked out has a special name. It is called a Vander-
monde determinant.

8.4.5 Theorem. If A is an n× n matrix, then the following are two equivalent statements about
A:
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(a) A is invertible

(b) det(A) 6= 0.

This can then be added as an extra part to a theorem you have seen before. Recall that there
are several ways to recognise invertible matrices:

Let A be an n× n (square) matrix.

The following are equivalent statements about A, meaning that is any one of them is
true, then the other have to be true as well. (And if one is not true, the others must
all be not true.)

(a) A is invertible (has an inverse)

(c) the equation Ax = 0 (where x is an unknown n × 1 column matrix, 0 is the
n× 1 zero column) has only the solution x = 0

(d) the reduced row echelon for A is In
(e) A can be written as a product of elementary matrices

(f) there is an n× n matrix B with BA = In

(g) there is an n× n matrix B with AB = In

Proof. If you recall the equivalence of (a) and (d) [something discussed last semester and so we
take it as known] we can deduce the equivalence of (a) and (b).

In fact we have that (a) implies (b) because of the fact that if A has an inverse then det(A−1) =
1/ det(A) — so that det(A) 6= 0. So if we know (a) is true about A, then (b) must also be true.

On the other hand suppose we know that (b) holds, that is that det(A) 6= 0. If we row
reduce A, the determinant may change by various factors for some of the row operations, but
the factors are always nonzero. So when we end up with a row echelon form (triangular) the
diagonal entries must be all 1 (otherwise we would have zero for det(A)). If we continue with
Gauus-Jordan eleimination to reduced row echelon form we must get the identity matrix. So A
satisfies (d), hence satisfies (a).

8.5 A determinant formula for the inverse matrix
If A is an n × n matris, then we know more or less that det(A) is the number that you have to
dvide by to calculate A−1. We can now give a formula that makes that very clear.

8.5.1 Definition (Matrix of cofactors). If A is an n×n matrix with (i, j) entry ai,j we define the
cofactor for the (i, j) entry to be

Cij = (−1)i+j det(Mi,j)

where Mi,j is the matrix you get by covering over row i and column j of A. (So the matrices
Mi,j are (n− 1)× (n− 1) matrices.)

The matrix of cofactors of A is the n× n matrix with (i, j) entry Ci,j .
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8.5.2 Remark. In this terminology we can say that the way we defined the determinant was

det(A) = a1,1C1,1 + a1,2C1,2 + · · ·+ a1,nC1,n

That is multiply the entries in the first row times their cofactors, and add up the results.
The signs (−1)i+j that go on the cofactors start with plus in the top left corner and alternate

their signs along rows or down columns, like this
+ − + · · ·
− + − · · ·
+ − + · · ·
... . . .


8.5.3 Definition (Adjugate matrix). If A is an n× n matrix, then the adjugate matrix of A is the
transpose of the matrix of cofactors. We will denote this matrix by adj(A).

8.5.4 Theorem (Determinant formula for the inverse). If A is an n× n matrix, then

A adj(A) = det(A)In

From this we see that

(i) If det(A) 6= 0, then

A−1 =
1

det(A)
adj(A)

(ii) We can expand det(A) by cofactor expansion along any row because multiplying row i of
A times column i of adj(A) gives

ai,1Ci,1 + ai,2Ci,2 + · · ·+ ai,nCi,n = det(A)

(iii) We can expand det(A) by cofactor expansion along any column.

Proof. We won’t make any attempt to prove that A adj(A) = det(A)In.
The rest are really more or less immediate consequences. If det(A) 6= 0 then we can say

A

(
1

det(A)
adj(A)

)
= In

That says that (1/det(A)) adj(A) is the inverse. So the product works the other way around also(
1

det(A)
adj(A)

)
A = In

and therefore adj(A)A = det(A)In.
The formula A adj(A) = det(A)In does imply that row i of A times column i of adj(A)

gives det(A) (the (i, i) entry of det(A)In). Since adj(A) is the transpose of the cofactor matrix,
column i of adj(A) is row i of the cofactor matrix.

If you use adj(A)A = det(A)In and work out what that says for the (i, i) entry, you end up
with the cofactor expansion along column i.
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8.5.5 Example. In the case of a 2× 2 matrix

A =

[
a b
c d

]
then the matrix of cofactors (just a matrix of 1× 1 determinants with ± signs attached is

cofactor matrix(A) =
[
+d −c
−b +a

]
and taking the transpose we get the adjugate

adj(A)

[
d −b
−c a

]
So we get again the familiar formula for the inverse of a 2× 2 matrix

A =
1

det(A)
adjA =

1

ad− bc

[
d −b
−c a

]
8.5.6 Example. Find adj(A) when

A =

1 2 3
0 4 5
0 0 6


Solution: The cofactor matrix for A is

+det

[
4 5
0 6

]
− det

[
0 5
0 6

]
+det

[
0 4
0 0

]
− det

[
2 3
0 6

]
+det

[
1 3
0 6

]
− det

[
1 2
0 0

]
+det

[
2 3
4 5

]
− det

[
1 3
0 5

]
+det

[
1 2
0 4

]

 =

 24 0 0
−12 6 0
−2 −5 4



Take the transpose to get the adjugate:

adj(A) =

24 −12 −20 6 −5
0 0 4


(We could verify that A adj(A) = det(A)I3. In fact det(A) = 24 in this case because A

is triangular and so the determinant is the product of the diagonal elements (of A). We also
have A−1 = (1/ det(A)) adj(A) = (1/24) adj(A) and A−1 is upper trainagular — as you should
know would be the case since A is upper triangular.)
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8.6 Cramer’s rule

This is a topic that is treated in many textbooks, a fairly direct consequence of the formula
A−1 = (1/ det(A)) adj(A) for the inverse.

We recall that if we have a system of n equations in n unknowns, then it can be written as a
single matrix equation of the form

Ax = b

where A is the matrix of coefficients in the left hand sides of the equations, x are the n unknowns
written as a column matrix (n×1 column) and b is the right-hand sides again written as a column.

More precisely stated, the idea is that a system of m linear equations in n unknowns
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

can be written as a single matrix equation
a11 a12 · · · a1n
a21 a22 · · · a2n

... . . .
am1 am2 · · · amn




x1

x2
...
xn

 =


b1
b2
...
bm


which is of the form Ax = b we mean. However, I am concentrating now on the situation where
m = n and A is a square matrix.

Now recall that in the case of the same number of equatioins as unknowns, if we know that
the (square) matrix A has an inverse, and we know what A−1 is, then we can easily solve Ax = b
by multiplying both sides on the lect by A−1 to get A−1Ax = A−1b or

x = A−1b

We can combine that with our formula for the iverse to get

x =
adj(A)b

det(A)

and further we can express the result in terms of n × n determinants. To calculate adj(A)x we
multiply the rows of adj(A) times the column b. But the rows of A are the columns of the
cofactor matrix. So, for instance the first unknown x1 is

x1 =
C1,1b1 + C2,1b2 + · · ·+ Cn,1bn

det(A)
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The top line of this fraction is actually a determinant also (expanded along column 1 via cofactor
expansion). We have

x1 =

det


b1 a12 · · · a1n
b2 a22 · · · a2n
... . . .
bn an2 · · · ann



det


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . .
an1 an2 · · · ann


The denominator is the determinant of the matrix A of the coefficients, while the determinant

in the numerator has the first column replaced by the column b of right hand sides.
What Cramer’s rule says is that

xj =
det(matrix got from A by replacing column j by b)

det(A)

8.6.1 Example. Write a determinant formula for x3 if (x1, x2, x3, x4) solves the system
5x1 + 8x2 − 2x3 + x4 = −9

x2 + 4x3 − 7x4 = 3
11x3 + 2x4 = −1

x1 + x2 − 8x3 + 3x4 = 0

(assuming that the matrix of coefficients is invertible).
Solution: By Cramer’s rule we have

x3 =

det


5 8 −9 1
0 1 3 −7
0 0 −1 2
1 1 0 3



det


5 8 −2 1
0 1 4 −7
0 0 11 2
1 1 −8 3


(Note that column 3 on the top is the one that is different from the one below. The determinant

below is the determinat of the matrix of coefficients. On the top column 3 is replaced by the
column of right hand sides.)
April10: Fix typo in Theorem 8.5.4.

Richard M. Timoney April 10, 2016
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