
Chapter 7. Matrices

This material is in Chapter 1 of Anton Linear Algebra.
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7.1 Basic matrix notation

We recall that a matrix is a rectangular array or table of numbers. We call the individual numbers
entries of the matrix and refer to them by their row and column numbers. The rows are numbered
1, 2, . . . from the top and the columns are numbered 1, 2, . . . from left to right.

So we use what you might think of as a
(row, colum)

coordinate system for the entries of a matrix.
In the example  1 1 2 5

1 11 13 −2
2 1 3 4


13 is the (2, 3) entry, the entry in row 2 and column 3.
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The matrix above is called a 3× 4 matrix because it has 3 rows and 4 columns. We can talk
about matrices of all different sizes such as[

4 5
7 11

]
2× 2

[
4
7

]
2× 1

[
4 7

]
1× 2

 4 5
7 11
13 13


3× 2

and in general we can have m× n matrices for any m ≥ 1 and n ≥ 1.
Matrices with just one row are called row matrices. A 1× n matrix [ x1 x2 · · · xn ] has

just the same information in it as an n-tuple (x1, x2, . . . , xn) ∈ Rn and so we could be tempted
to identify 1× n matrices with n-tuples (which we know are points or vectors in Rn).

We use the term column matrix for a matrix with just one column. Here is an n× 1 (column)
matrix 

x1

x2
...
xn


and again it is tempting to think of these as the “same” as n-tuples (x1, x2, . . . , xn) ∈ Rn. Maybe
not quite as tempting as it is for row matrices, but not such a very different idea.

To avoid confusion that would certainly arise if we were to make either of these identifications
(either of 1×n matrices with n-tuples or of n×1 matrices with n-tuples) we will not make either
of them and keep all the different objects in their own separate places. A bit later on, it will often
be more convenient to think of column n × 1 matrices as points of Rn, but we will not come to
that for some time.

Now, to clarify any confusion these remarks might cause, we explain that we consider two
matrices to be the ‘same’ matrix only if they are absolutely identical. They have to have the
same shape (same number of rows and same number of columns) and they have to have the same
numbers in the same positions. Thus, all the following are different matrices

[
1 2
3 4

]
6=
[
2 1
3 4

]
6=
[
2 1 0
3 4 0

]  2 1
3 4
0 0


7.2 Double subscripts
When we want to discuss a matrix without listing the numbers in it, that is when we want to
discuss a matrix that is not yet specified or an unknown matrix we use a notation like this with
double subscripts [

x11 x12

x21 x22

]
This is a 2× 2 matrix where the (1, 1) entry is x11, the (1, 2) entry is x12 and so on.
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It would probably be clearer of we put commas in and write[
x1,1 x1,2

x2,1 x2,2

]
instead, but people commonly use the version without the commas between the two subscripts.

Carrying this idea further, when we want to discuss an m×n matrix X and refer to its entries
we write

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
... . . . ...

xm1 xm2 · · · xmn


So the (i, j) entry of X is called xij . (It might be more logical to call the matrix x in lower case,
and the entries xij as we have done, but it seems more common to use capital letters line X for
matrices.)

Sometimes we want to write something like this but we don’t want to take up space for the
whole picture and we write an abbreviated version like

X = [xij]1≤i≤m,1≤j≤n

To repeat what we said about when matrices are equal using this kind of notation, suppose
we have two m× n matrices

X = [xij]1≤i≤m,1≤j≤n and Y = [yij]1≤i≤m,1≤j≤n

Then X = Y means the mn scalar equations xij = yij must all hold (for each (i, j) with
1 ≤ i ≤ m, 1 ≤ j ≤ n). And if an m× n matrix equals an r × s matrix, we have to have m = r
(same number or rows), n = s (same number of columns) and then all the entries equal.

7.3 Arithmetic with matrices

In much the same way as we did with n-tuples we now define addition of matrices. We only
allow addition of matrices that are of the same size. Two matrices of different sizes cannot be
added.

If we take two m× n matrices

X = [xij]1≤i≤m,1≤j≤n and Y = [yij]1≤i≤m,1≤j≤n

then we define
X + Y = [xij + yij]1≤i≤m,1≤j≤n

(the m× n matrix with (1, 1) entry the sum of the (1, 1) entries of X and Y , (1, 2) entry the sum
of the (1, 2) entries of X and Y , and so on).
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For example 2 1
3 −4
0 7

+

 6 −2
15 12
−9 21

 =

 2 + 6 1 + (−2)
3 + 15 −4 + 12

0 + (−9) 7 + 21

 =

 8 −1
18 8
−9 28


We next define the scalar multiple kX , for a number k and a matrix X . We just multiply

every entry of X by k. So if
X = [xij]1≤i≤m,1≤j≤n

is any m× n matrix and k is any real number then kX is another m× n matrix. Specifically

kX = [kxij]1≤i≤m,1≤j≤n

For example For example

8

 2 1
3 −4
0 7

 =

 8(2) 8(1)
8(3) 8(−4)
8(0) 8(7)

 =

 16 8
24 −32
0 56


We see that if we multiply by k = 0 we get a matrix where all the entries are 0. This has a

special name.
The m× n matrix where every entry is 0 is called the m× n zero matrix. Thus we have zero

matrices of every possible size.
If X is a matrix then we can say

X + 0 = X

if 0 means the zero matrix of the same size as X . If we wanted to make the notation less
ambiguous, we could write something like 0m,n for the m × n zero matrix. Then things we can
note are that if X is any m× n matrix then

X + 0m,n = X, 0X = 0m,n

We will not usually go to the lengths of indicating the size of the zero matrix we mean in this
way. We will write the zero matrix as 0 and try to make it clear what size matrices we are dealing
with from the context.

7.4 Matrix multiplication
This is a rather new thing, compared to the ideas we have discussed up to now. Certain matrices
can be multiplied and their product is another matrix.

If X is an m× n matrix and Y is an n× p matrix then the product XY will make sense and
it will be an m× p matrix.

For example, then [
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4
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is going to make sense. It is the product of

2× 3 by 3× 4

and the result is going to be 2 × 4. (We have to have the same number of columns in the left
matrix as rows in the right matrix. The outer numbers, the ones left after ‘cancelling’ the same
number that occurs in the middle, give the size of the product matrix.)

Here is an example of a product that will not be defined and will not make sense[
1 2 3
4 5 6

] [
7 8
9 10

]
2× 3 by 2× 2

Back to the example that will make sense, what we have explained so far is the shape of the
product [

1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14
z21 z22 z23 z24

]
and we still have to explain how to calculate the zij , the entries in the product. We’ll concentrate
on one example to try and show the idea. Say we look at the entry z23, the (2, 3) entry in the
product. What we do is take row 2 of the left matrix ‘times’ column 3 of the right matrix[

1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14
z21 z22 z23 z24

]

The way we multiply the row
[
4 5 6

]
times the column 1

3
6


is a very much reminiscent of a dot product

(4)(1) + (5)(3) + (6)(6) = z23

In other words z23 = 55[
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14
z21 z22 55 z24

]
If we calculate all the other entries in the same sort of way (row i on the left times column j on
the right gives zij we get[

1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
17 4 25 12
38 7 55 21

]
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The only way to get used to the way to multiply matrices is to do some practice. It is possible
to explain in a succinct formula what the rule is for calculating the entries of the product matrix.
In 

x11 x12 · · · x1n

x21 x22 · · · x2n
... . . . ...

xm1 xm2 · · · xmn




y11 y12 · · · y1p
y21 y22 · · · y2p
... . . . ...

yn1 yn2 · · · ynp

 =


z11 z12 · · · z1p
z21 z22 · · · z2p
... . . . ...

zm1 zm2 · · · zmp


the (i, k) entry zik of the product is got by taking the dot product of the ith row [xi1 xi2 . . . xin] of

the first matrix times the kth column


y1k
y2k

...
ynk

 of the second. In short

xi1y1k + xi2y2k + · · ·+ xinynk = zik

If you are familiar with the Sigma notation for sums, you can rewrite this as

n∑
j=1

xijyjk = zik (for 1 ≤ i ≤ m, 1 ≤ k ≤ p).

7.5 Remarks about computer algebra
This might be a good time to look at using computer algebra to manipulate matrices.

www.wolframalpha.com (and the Mathematica computer algebra ssytem to which it is
related) treats matrices using the idea of a list. Lists in Mathematica are given by curly brackets
(or braces) and commas to separate the items in the list.

www.wolframalpha.com (and Mathematica) uses this to indicate n-tuples of numbers
(vectors in Rn). So if you ask it about Vector {4, -1}, it will draw you the position vector
of the point (4,−1) in the plane, while Vector {4, 5, 3} will get it to draw the position
vector of (4, 5, 3) in space. Amongst other output it gives you a ‘Normalized vector’, which
means the unit vector in the same direction — if v is a (nonzero) vector, then

1

‖v‖
v

will be a vector in the same direction as v (since we are multiplying by a positive scalar) and
length 1/‖v‖ times the length ‖v‖ of v. So ‖(1/‖v‖)v‖ = 1, (1/‖v‖)v has length one (unit
vector).

The input

Vector {4, -1} + {1,7}

will show you a diagram of the parallellogram rule for adding the two vectors 4i− j and 4i+ 7j
in the plane. Something similar works for 3-dimensional vectors.

www.wolframalpha.com
www.wolframalpha.com
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This idea of inputting a vector as a list of components (or coordinates) is perhaps reminiscent
of how we treated Rn. It may be a bit odd that it wants curly brackets {· · · } around the list
rather than other kind of brackets but you’ll find it is not very understanding of different kinds of
brackets.

www.wolframalpha.com (and Mathematica) understands matrices as lists of rows. This
is perhaps more odd, and not easy to enter if the matrix is anyway big.

So to get Mathematica to deal with  3 4
5 −6
7 8


we should enter

{ {3, 4}, {5, -6}, {7,8}}

The idea is that it views the 3×2 matrix as a list of 3 rows, and each row as a list of two numbers.
Adding matrices is easy (just use the the ordinary plus sign) and so is multiplication of ma-

trices by scalars. However, matrix multiplication has to be done with a dot.
These work

{{1, 2}, {3, 4}} + {{3, 5}, {1, -1}}

2 {{1, 2, 3}, {3, 4, 5}} + {{3, 5, 0}, {1, -1, 11}}

but

{{1, 2}, {3, 4}} {{3, 5}, {1, -1}}

produces a result that is normally considered wrong!

{{1, 2}, {3, 4}} . {{3, 5}, {1, -1}}

(with the dot) gives the right result for(
1 2
3 4

)(
3 5
1 −1

)
We can also ask it to compute

{{1, 2}, {3, 4}} . {{3, 5}, {1, -1}} - {{3, 5}, {1, -1}} . {{1, 2}, {3, 4}}

which means (
1 2
3 4

)(
3 5
1 −1

)
−
(
3 5
1 −1

)(
1 2
3 4

)
=

(
−13 −23
15 13

)
This is an important feature of matrix multiplication: AB and BA are usually different when A
and B are matrices. The order is important!

www.wolframalpha.com
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7.6 Properties of matrix multiplication

Matrix multiplication has properties that you would expect of any multiplication. The standard
rules of algebra work out, or most of them, as long as you keep the order of the products intact.

(i) If A and B are both m× n matrices and C is n× p, then

(A+B)C = AC +BC

and
(kA)C = k(AC) = A(kC)

(ii) If A is an m× n matrices and B and C are both n× p and k is a scalar, then

A(B + C) = AB + AC

(iii) If A is an m× n matrices and B is n× p and C is p× q, then the two ways of calculating
ABC work out the same:

(AB)C = A(BC)

(This is known as the associative law for multiplication.)

In the Mathematica transcript above, you see that AB 6= BA in general for matrices. The
situation is as follows.

(a) BA does not have to make sense if AB makes sense.

For example if A is a 3 × 4 matrix and B is 4 × 2, then AB does make sense. AB is
(3× 4)(4× 2) and so makes sense as a 3× 2 matrix. But BA would be a product of a 4× 2
times a 3× 4 — so it makes no sense.

(b) It can be that AB and BA both make sense but they are different sizes. For example of A is
a 2 × 3 matrix and B is a 3 × 2 matrix, then AB is 2 × 2 while BA is 3 × 3. As they are
different sizes AB and BA are certainly not equal.

(c) The more tricky case is the case where the matrices A and B are square matrices of the same
size.

A square matrix is an n×n matrix for some n. Notice that the product of two n×n matrices
is another n× n matrix.

Still, it is usually not the case that AB = BA when A and B are n × n. The example we
worked out with Mathematica was

A =

[
1 2
3 4

]
, B =

[
3 5
1 −1

]
, AB =

[
5 3
13 11

]
, BA =

[
18 26
−2 −2

]
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The upshot is that the order matters in matrix multiplication. The last example is not at all hard
to come up with. If you write down two n × n matrices A and B at random, the chances are
AB 6= BA.

There are some special square matrices which deserve a special name. We’ve already seen
the zero matrix (which makes sense for any size — can be m× n and need not be square). One
special matrix is the n× n identity matrix which we denote by In. So

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and in general In is the n × n matrix with 1 in all the ‘diagonal’ entries and zeroes off the
diagonal.

By the diagonal entries of an n× n matrix we mean the (i, i) entries for i = 1, 2, . . . , n. We
try not to talk of the diagonal for rectangular matrices (because the line from the top left corner
to the bottom right probably won’t contain many entries of the matrix).

The reason for the name is that the identity matrix is a multiplicative identity. That is ImA =
A and A = AIn for any m× n matrix A. These facts are easy to figure out.

7.7 Systems of linear equations revisited
There is a way to write a system of linear equations as a single matrix equation. For example,
the system

5x1 − 2x2 + x3 − 4x4 = −3
2x1 + 3x2 + 7x3 + 2x4 = 18
x1 + 2x2 − x3 − x4 = −3

of 3 equations in 4 unknowns can be written 5x1 − 2x2 + x3 − 4x4

2x1 + 3x2 + 7x3 + 2x4

x1 + 2x2 − x3 − x4

 =

 −318
−3


and the left side can be written as a matrix product. We get 5 −2 1 −4

2 +3 +7 +2
1 +2 −1 −1




x1

x2

x3

x4

 =

 −318
−3


This has the form

Ax = b (1)

where

A =

 5 −2 1 −4
2 3 7 2
1 2 −1 −1
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is the matrix of the coefficients for the unknowns x1, x2, x3, x4 (a 3× 4 matrix),

x =


x1

x2

x3

x4


is the 4× 1 (column) matrix made up of the unknowns, and

b =

 −318
−3


is the (3 × 1 column) matrix of the constant terms (right hand sides) in the system of linear
equations.

Note that this is rather different from the augmented-matrix shorthand we used in Chapter 1.
That could be summarised as taking the matrix

[A |b],

which is a 3× (4 + 1) = 3× 5 matrix

A =

 5 −2 1 −4 : −3
2 3 7 2 : 18
1 2 −1 −1 : −3


Recall that the positions of the entries in the augmented matrix correspond to their rôle as coef-
ficients in the system of equations, while the dotted line is there to remind us of the position of
the equals sign.

Looking at the equation (1), you should be reminded of the simplest possible linear equations
in a single unknown, like 5x = 21, which we solve by dividing across by the thing multiplying
x. (In the example 5x = 21 we divide across by 5, or multiply both sides of the equation by 1

5
to

get the solution x = 21
5

.)
Thinking in these terms, it seems tempting to solve the equation (1) by ‘dividing’ both sides

by A. One problem is to make sense of division by a matrix. That would be the same as making
sense of the reciprocal of the matrix, or one over the matrix.

In the actual example we picked, with fewer equations than unknowns, this idea is never
going to work. We know from before that when we simplify 3 equations in 4 unknowns via
Gauss-Jordan elimination, one of two things can happen. Either we have inconsistent equations
(with no solutions at all) or we will end up with at least 1 free variable.

However, if we did have the same number of equations as unknowns, we are quite often going
to end up with just one solution for the unknowns. That is the case where we can possibly have
a reciprocal for the matrix A that comes up, except we will call it the inverse rather than the
reciprocal.
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To summarise the point here, it is that a system of m linear equations in n unknowns
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

can be written as a single matrix equation
a11 a12 · · · a1n
a21 a22 · · · a2n

... . . .
am1 am2 · · · amn




x1

x2
...
xn

 =


b1
b2
...
bm


So it is of the form (1) where now A is an m × n matrix, x is an n × 1 (column) matrix of
unknowns and b is an m× 1 column.

7.8 Inverse matrices — basic ideas

7.8.1 Definition. If A is an n×n matrix, then another n×n matrix C is called the inverse matrix
for A if it satisfies

AC = In and CA = In.

We write A−1 for the inverse matrix C (if there is one).

7.8.2 Remarks. The idea for this definition is that the identity matrix is analogous to the number
1, in the sense that 1k = k1 = k for every real number k while AIn = InA = A for every n× n
matrix A. (That’s why it is called the identity matrix.) Then the key thing about the reciprocal of
a nonzero number k is that the product (

1

k

)
k = 1

For numbers the order of the product is not important, but for matrices the order matters. That is
why we insist that the inverse should work on both sides.

A bit later on though, we will see a theorem that says that if A and C are n× n matrices and
AC = In, then automatically CA = In must also hold. Because AC is usually not the same
as CA, it should not be expected that AC = CA when AC = In. But it is true (for square
matrices).

However, one thing that is not as obvious as for numbers, is when there is an inverse for a
given matrix A. It is not enough that A should be nonzero. One way to see this is to look at a
system of n linear equations in n unknowns written in the matrix form (1). If the n×n matrix A
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has an inverse matrix C then we can multiply both sides of the equation (1) by C from the left to
get

Ax = b

C(Ax) = Cb

(CA)x = Cb

Inx = Cb

x = Cb

So we find that the system of n equation in n unknowns given by (1) will just have the one
solution x = Cb. And that will be true for any right hand side b.

This reveals a special property for an n× n matrix A that has an inverse. It means that there
are really n equations in (1), none are dependent on the others, none inconsistent with the others.
This amounts to a significant restriction on A.

7.8.3 Definition. An n × n matrix A is called invertible if there is an n × n inverse matrix for
A.

We now consider how to find the inverse of a given matrix A. The method we explain will
work quite efficiently for large matrices as well as for small ones.

We’ll leave aside the question of whether there is an inverse for the square matrix A that we
start with. We will also just look for C by looking at the equation AC = In, and worry later
about the claim we made before that CA = In will work out automatically once AC = In.

To make things more concrete, we’ll thing about a specific example

A =

[
2 3
2 5

]
We think of how we can find

C =

[
c11 c12
c21 c22

]
so that AC = I2. Writing out that equation we want C to satisfy we get

AC =

[
2 3
2 5

] [
c11 c12
c21 c22

]
=

[
1 0
0 1

]
= I2

If you think of how matrix multiplication works, this amounts to two different equations for the
columns of C [

2 3
2 5

] [
c11
c21

]
=

[
1
0

]
and

[
2 3
2 5

] [
c12
c22

]
=

[
0
1

]
According to the reasoning we used above to get to equation (1), each of these represents a system
of 2 linear equations in 2 unknowns that we can solve for the unknowns, and the unknowns in
this case are the columns of C.
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We know then how to solve them. We can use Gauss-Jordan elimination (or Gaussian elimi-
nation) twice, once for the augmented matrix for the first system of equations,[

2 3 : 1
2 5 : 0

]
and again for the second system [

2 3 : 0
2 5 : 1

]
If we were to write out the steps for the Gauss-Jordan eliminations, we’d find that we were
repeating the exact same steps the second time as the first time. The same steps, but the column
to the right of the dotted line will be different in each case. There is a trick to solve at once two
systems of linear equations, where the coefficients of the unknowns are the same in both, but the
right hand sides are different. (That is the situation we have.) The trick is to write both columns
after the dotted line, like this [

2 3 : 1 0
2 5 : 0 1

]
We row reduce this matrix[

1 3
2

: 1
2

0 OldRow1× 1
2

2 5 : 0 1[
1 3

2
: 1

2
0

0 2 : −1 1 OldRow2− 2× OldRow1[
1 3

2
: 1

2
0

0 1 : −1
2

1
2

OldRow2× 1
2

(row echelon form now)[
1 0 : 5

4
−3

4
OldRow1− 3

2
× OldRow2

0 1 : −1
2

1
2

This is in reduced row echelon form. (Gauss-Jordan finished.)
The first column after the dotted line gives the solution to the first system, the one for the first

column of C. The second column after the dotted line relates to the second system, the one for
the second column of C. That means we have[

c11
c21

]
=

[
5
4

−1
2

]
and

[
c12
c22

]
=

[
−3

4
1
2

]
So we find that the matrix C has to be

C =

[
5
4
−3

4

−1
2

1
2

]
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We can multiply out and check that it is indeed true that AC = I2 (which has to be the case
unless we made a mistake) and that CA = I2 (which has to be true automatically according to a
theorem that we have mentioned is coming later).

AC =

[
2 3
2 5

] [
5
4
−3

4

−1
2

1
2

]
=

[
2
(
5
4

)
+ 3

(
−1

2

)
2
(
−3

4

)
+ 3

(
1
2

)
2
(
5
4

)
+ 5

(
−1

2

)
2
(
−3

4

)
+ 5

(
1
2

)] = [1 0
0 1

]

CA =

[
5
4
−3

4

−1
2

1
2

] [
2 3
2 5

]
=

[(
5
4

)
(2) +

(
−3

4

)
(2)

(
5
4

)
(3) +

(
−3

4

)
(5)(

−1
2

)
(2) +

(
1
2

)
(2)

(
−1

2

)
(3) +

(
1
2

)
(5)

]
=

[
1 0
0 1

]
As mentioned before, this approach works for larger matrices too. If we start with an n × n

matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . . ...
an1 an2 · · · ann


and we look for an n× n matrix

C =


c11 c12 · · · c1n
c21 c22 · · · c2n
... . . . ...
cn1 cn2 · · · cnn


where AC = In, we want

AC =


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . . ...
an1 an2 · · · ann



c11 c12 · · · c1n
c21 c22 · · · c2n
... . . . ...
cn1 cn2 · · · cnn

 =


1 0 · · · 0
0 1 · · · 0
... . . . ...
0 0 · · · 1

 = In

This means that the columns of C have to satisfy systems of n linear equations in n unknowns
of the form

A(jth column of C) = jth column of In

We can solve all of these n systems of equations together because they have the same matrix A
of coefficients for the unknowns. We do this by writing an augmented matrix where there are n
columns after the dotted line. The columns to the right of the dotted line, the right hand sides of
the various systems we want to solve to find the columns of C, are going to be the columns of
the n× n identity matrix. Summarising, this is what we have.
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Method: (Method for finding the inverse A−1 of an n × n matrix A.) Use Gauss-
Jordan elimination to row reduce the augmented matrix

[A | In] =


a11 a12 · · · a1n : 1 0 · · · 0
a21 a22 · · · a2n : 0 1 · · · 0

... . . . ... :
... . . . ...

an1 an2 · · · ann : 0 0 · · · 1


We should end up with a reduced row echelon form that looks like

1 0 · · · 0 : c11 c12 · · · c1n
0 1 · · · 0 : c21 c22 · · · c2n
... . . . ... :

... . . . ...
0 0 · · · 1 : cn1 cn2 · · · cnn


or in summary [In |A−1].

We’ll now look into when this works more carefully. If we don’t end up with a matrix of the
form [In |C] it means that there is no inverse for A.

7.9 Elementary matrices
We now make a link between elementary row operations and matrix multiplication. Recall now
the 3 types of elementary row operations as laid out in section 1.6.

(i) multiply all the numbers is some row by a nonzero factor (and leave every other row un-
changed)

(ii) replace any chosen row by the difference between it and a multiple of some other row.

(iii) Exchange the positions of some pair of rows in the matrix.

7.9.1 Definition. An n × n elementary matrix E is the result of applying a single elementary
row operation to the n× n identity matrix In.

7.9.2 Examples. We use n = 3 in these examples. Recall

I3 =

1 0 0
0 1 0
0 0 1


(i) Row operation: Multiply row 2 by −5. Corresponding elementary matrix

E =

1 0 0
0 −5 0
0 0 1
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(ii) Row operation: Add 4 times row 1 to row 3 (same as subtracting (−4) times row 1 from
row 3). Corresponding elementary matrix

E =

1 0 0
0 1 0
4 0 1


(iii) Row operation: swap rows 2 and 3.

E =

1 0 0
0 0 1
0 1 0


7.10 Link of matrix multiplication to row operations
The idea here is that if A is an m × n matrix, then doing one single row operation on A is
equivalent to multiplying A on the left by an elementary matrix E (to get EA), and E should be
the m×m elementary matrix for that same row operation.

7.10.1 Example. We use the following A to illustrate this idea,

A =

1 2 3 4
5 6 7 8
9 10 11 12


(i) Row operation: Add (−5) times row 1 to row 2. Corresponding EA is

EA =

 1 0 0
−5 1 0
0 0 1

1 2 3 4
5 6 7 8
9 10 11 12

 =

1 2 3 4
0 −4 −8 −12
9 10 11 12


(Same as doing the row operation to A.)

(ii) Row operation: Suppose in addition we also want to add (−9) times row 1 to row 3. We’ve
been doing two steps together, but really they should be done one at a time. (Doing two
together is ok as long as it is clear that you could still do the second one after you’ve
done the first.) In the context of multiplying by elementary matrices, we need a different
elementary matrix for the second step

E2 =

 1 0 0
0 1 0
−9 0 1


What we want in order to do first one and then the next row operation is

E2EA =

 1 0 0
0 1 0
−9 0 1

EA =

 1 0 0
0 1 0
−9 0 1

1 2 3 4
0 −4 −8 −12
9 10 11 12

 =

1 2 3 4
0 −4 −8 −12
0 −8 −16 −24
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where E is the elementary matrix we used first.

There is a justification for going back and renaming the first one E1 rather than E. So the
first row operation changes A to E1A, and then the second changes that to E2E1A.

If we do a whole sequence of several row operations (as we would do if we followed the
Gaussian elimination recipe further) we can say that the end result after k row operations
is that we get

EkEk−1 . . . E3E2E1A

where Ei is the elementary matrix for the ith row operation we did.

7.11 Elementary matrices are invertible
As we explained at the end of section 1.5, all elementary row operations are reversible by another
elementary row operation. It follows that every elementary matrix E has an inverse that is another
elementary matrix.

For example, take E to be the 3 × 3 elementary matrix corresponding the the row operation
“add (−5) times row 1 to row 2”. So

E =

 1 0 0
−5 1 0
0 0 1


Then the reverse row operation is ”add 5 times row 1 to row 2”, and the elementary matrix for
that is

Ẽ =

1 0 0
5 1 0
0 0 1


Thinking in terms of row operations, or just my multiplying out the matrices we see that

ẼE = (result of applying second row operation to E) =

1 0 0
0 1 0
0 0 1

 = I3

and EẼ = I3 also.

7.12 Theory about invertible matrices
7.12.1 Proposition. If A is an invertible n×n matrix, then its inverse A−1 is also invertible and

(A−1)−1 = A

Proof. What we know about the inverse A−1 (from its definition) is that

AA−1 = In and A−1A = In
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In words, the inverse of A is a matrix with the property that A time the inverse and the inverse
times A are both the identity matrix In.

But looking at the two equations again and focussing on A−1 rather than on A, we see that
there is a matrix which when multiplied by A−1 on the right or the left gives In. And that matrix
is A. So A−1 has an inverse and the inverse is A.

7.12.2 Theorem. Products of invertible matrices are invertible, and the inverse of the product is
the product of the inverses taken in the reverse order.

In more mathematical language, if A and B are two invertible n × n matrices, then AB is
invertible and (AB)−1 = B−1A−1.

Proof. Start with any two invertible n× n matrices A and B, and look at

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In

And look also at

(B−1A−1)(AB) = B−1(B−1B)A = B−1InB = B−1B = In

This shows that B−1A−1 is the inverse of AB (because multiplying AB by B−1A−1 on the left
or the right gives In). So it shows that (AB)−1 exists, or in other words that AB is invertible, as
well as showing the formula for (AB)−1.

7.12.3 Theorem (ways to see that a matrix is invertible). Let A be an n× n (square) matrix.
The following are equivalent statements about A, meaning that is any one of them is true,

then the other have to be true as well. (And if one is not true, the others must all be not true.)

(a) A is invertible (has an inverse)

(b) the equation Ax = 0 (where x is an unknown n × 1 column matrix, 0 is the n × 1 zero
column) has only the solution x = 0

(c) the reduced row echelon for for A is In

(d) A can be written as a product of elementary matrices

Proof. We’ll actually relegate the proof to an appendix, even though we are now in a position
to explain the reasons the theorem works. The details seemed a bit lengthy and abstract to
go through them in the lectures, even though they just involve putting together things we have
already done, and the book by Anton & Rorres goes through this proof.

One thing that we will explain here is the overall way of approaching the proof.
The whole idea of what a proof is in Mathematics should be borne in mind. Theorems are the

mathematical version of the laws of science (the second law of thermodynamics, Boyle’s law,
Newtons Laws and so on), but there is a difference. In Science, somebody formulates a possible
rule or law as a way of summarising observations made in experiments. The law should then
be checked with further experiments and if it checks out, it becomes accepted as a fact. Such
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laws generally have to have a precise statement for them to work. Roughly they say that given a
certain situation, some particular effect or result will happen. Sometimes the “certain situation”
may be somewhat idealised. For example, some things may hold in a vacuum, or in the absence
of gravity, and these circumstances are hard to come by in a perfect sense. So one may interpret
the law as saying that the effect or result should be very close to the observed effect or result if
the situation is almost exactly valid. So it is true to say that light travels in a straight line (in a
vacuum and in the absence of gravity), and it is almost true even if there is gravity. But over long
distances across space, light can be observed to have been bent.

In mathematics we expect our theorems to be exactly true as stated. So there will be assump-
tions about the situation (certain kind of matrix, certain kind of function, maybe a combination of
several assumptions). But then the idea is that the conclusion of the theorem should always hold
when the assumptions are valid. We don’t check a theorem by experience, or by experiments.
We might realise it is possibly true on such a basis, but the idea then is to show by some steps
of logical reasoning that the conclusion must always hold in the situation where the assumptions
are valid.

In principle there are a lot of things to prove in the theorem we are discussing. Staring with
any one of the 4 items, assuming that that statement is valid for a given n × n matrix A, we
should provide a line of logical reasoning why all the other items have to be also true about that
same A. We don’t do this by picking examples of matrices A, but by arguing about a matrix
where we don’t specifically know any of the entries. But we then have 4 times 3 little proofs to
give, 12 proofs in all. So it would be long even if each individual proof is very easy.

There is a trick to reduce the number of proofs from 12 to only 4. We prove a cyclical number
of steps

(a) ⇒ (b)
⇑ ⇓

(d) ⇐ (c)

The idea then is to prove 4 things only

(a)⇒ (b) In this step we assume only that statement (a) is true about A, and then we show that
(b) must also be true.

(b)⇒ (c) In this step we assume only that statement (b) is true about A, and then we show that
(c) must also be true.

(c)⇒ (d) Similarly we assume (c) and show (d) must follow.

(d)⇒ (a) In the last step we assume (d) (not any of the others, only (d)) and show that (a) must
follow.

When we have done this we will be able to deduce all the statements from any one of the 4.
Starting with (say) the knowledge that (c) is a true statement the third step above shows that (d)
must be true. Then the next step tells us (a) must be true and the first step then says (b) must be
true. In other words, starting at any point around the ring (or at any corner of the square) we can
work around to all the others.
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We’ll leave the 4 proofs out though, but give them in an appendix in case you are interested.

7.12.4 Theorem. If A and B are two n× n matrices and if AB = In, then BA = In.

Proof. The idea is to apply Theorem 7.12.3 to the matrix B rather than to A.
Consider the equation Bx = 0 (where x and 0 are n × 1). Multiply that equation by A on

the left to get

ABx = A0

Inx = 0

x = 0

So x = 0 is the only possible solution of Bx = 0.
That means B must satisfy condition (b) of Theorem 7.12.3. Thus by the theorem, B−1

exists. Multiply the equation AB = In by B−1 on the right to get

ABB−1 = InB
−1

AIn = B−1

A = B−1

So, we get
BA = BB−1 = In.

7.13 Special matrices
There are matrices that have a special form that makes calculations with them much easier than
the same calculations are as a rule.

7.13.1 Definition (Diagonal matrices). For square matrices (that is n × n for some n) A =
(aij)

n
i,j=1 we say that A is a diagonal matrix if aij = 0 whenever i 6= j.

7.13.2 Examples. Thus in the first few cases n = 2, 3, 4 diagonal matrices look like[
a11 0
0 a22

]
a11 0 0

0 a22 0
0 0 a33



a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44
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Examples with numbers 4 0 0
0 −2 0
0 0 13

 ,

−1 0 0
0 0 0
0 0 4

 .

(These are 3× 3 examples.)

7.13.3 Remarks. Diagonal matrices are easy to multiply4 0 0
0 5 0
0 0 6

−1 0 0
0 12 0
0 0 4

 =

−4 0 0
0 60 0
0 0 24


a11 0 0

0 a22 0
0 0 a33

b11 0 0
0 b22 0
0 0 b33

 =

a11b11 0 0
0 a22b22 0
0 0 a33b33


The idea is that all that needs to be done is to multiply the corresponding diagonal entries to get
the diagonal entries of the product (which is again diagonal).

Based on this we can rather easily figure out how to get the inverse of a diagonal matrix. For
example if

A =

4 0 0
0 5 0
0 0 6


then

A−1 =

1
4

0 0
0 1

5
0

0 0 1
6


because if we multiply these two diagonal matrices we get the identity.

We could also figure out A−1 the usual way, by row-reducing [A | I3]. The calculation is
actually quite easy. Starting with

[A | I3] =

 4 0 0 : 1 0 0
0 5 0 : 0 1 0
0 0 6 : 0 0 1


we just need to divide each row by something to get to

[A | I3] =

 1 0 0 : 1
4

0 0
0 1 0 : 0 1

5
0

0 0 1 : 0 0 1
6


In summary, for 3× 3 diagonal matrices,a11 0 0

0 a22 0
0 0 a33

−1

=

 1
a11

0 0

0 1
a22

0

0 0 1
a33
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and the diagonal matrices that are invertible are those for which this formula makes sense — in
other words, those where the diagonal entries are all non-zero, or

a11a22a33 6= 0

A similar result holds for 2 × 2 diagonal matrices and for diagonal matrices of larger sizes.
The number which must be non-zero for a diagonal matrix to be invertible, the product of the
diagonal entries for a diagonal matrix, is an example of a “determinant”. We will come to
determinants (for all square matrices) later.

7.13.4 Definition (Upper triangular matrices). This is the name given to square matrices where
all the non-zero entries are on or above the diagonal.

A 4× 4 example is

A =


4 −3 5 6
0 3 7 −9
0 0 0 6
0 0 0 −11


Another way to express it is that all the entries that are definitely below the diagonal have to be
0. Some of those on or above the diagonal can be zero also. They can all be zero and then we
would have the zero matrix, which would be technically upper triangular. All diagonal matrices
are also counted as upper triangular.

7.13.5 Definition (More formal version — upper triangular). The precise statement then is that
an n× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . . ...
an1 an2 · · · ann


is upper triangular when

aij = 0 whenever i > j.

7.13.6 Remarks. It is fairly easy to see that if A and B are two n× n upper triangular matrices,
then

the sum A+B and the product AB

are both upper triangular.
Also inverting upper triangular matrices is relatively painless because the Gaussian elimina-

tion parts of the process are almost automatic. As an example, we look at the (upper triangular)

A =


3 4 5 6
0 7 8 9
0 0 1 2
0 0 0 3
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We should row reduce 
3 4 5 6 : 1 0 0 0
0 7 8 9 : 0 1 0 0
0 0 1 2 : 0 0 1 0
0 0 0 3 : 0 0 0 1


and the first few steps are to divide row 1 by 3, row 2 by 7 and row 4 by 3, to get

1 4
3

5
3

2 : 1
3

0 0 0
0 1 8

7
9
7

: 0 1
7

0 0
0 0 1 2 : 0 0 1 0
0 0 0 1 : 0 0 0 1

3


This is then already in row echelon form and to get the inverse we need to get to reduced row
echelon form (starting by clearing out above the last leading 1, then working back up). The end
result should be 

1 0 0 0 : 1
3
− 4

21
−1

7
0

0 1 0 0 : 0 1
7
−8

7
1
3

0 0 1 0 : 0 0 1 −2
3

0 0 0 1 : 0 0 0 1
3


It is quite easy to see that an upper triangular matrix is invertible exactly when the diagonal

entries are all nonzero. Another way to express this same thing is that the product of the diagonal
entries should be nonzero.

It is also easy enough to see from the way the above calculation of the inverse worked out
that the inverse of an upper triangular matrix will be again upper triangular.

7.13.7 Definition (Strictly upper triangular matrices). These are matrices which are upper trian-
gular and also have all zeros on the diagonal. This can also be expressed by saying that there
should be zeros on and below the diagonal.

The precise statement then is that an n× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . . ...
an1 an2 · · · ann


is strictly upper triangular when

aij = 0 whenever i ≥ j.

7.13.8 Example. An example is

A =

0 1 2
0 0 3
0 0 0
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This matrix is certainly not invertible. To be invertible we need each diagonal entry to be nonzero.
This matrix is at the other extreme in a way — all diagonal entries are 0.

For this matrix

A2 = AA =

0 1 2
0 0 3
0 0 0

0 1 2
0 0 3
0 0 0

 =

0 0 3
0 0 0
0 0 0


and

A3 = AA2 =

0 1 2
0 0 3
0 0 0

0 0 3
0 0 0
0 0 0

 =

0 0 0
0 0 0
0 0 0

 = 0

In fact this is not specific to the example. Every strictly upper triangular matrix

A =

0 a12 a13
0 0 a23
0 0 0


has

A2 =

0 0 a12a23
0 0 0
0 0 0

 and A3 = 0.

In general an n× n strictly upper triangular matrix A has An = 0.

7.13.9 Definition. A square matrix A is called nilpotent if some power of A is the zero matrix.

7.13.10 Remark. We have just seen that n× n strictly upper triangular matrices are nilpotent.
This shows a significant difference between ordinary multiplication of numbers and matrix

multiplication. It is not true that AB = 0 means that A or B has to be 0. The question of which
matrices have an inverse is also more complicated than it is for numbers. Every nonzero number
has a reciprocal, but there are many nonzero matrices that fail to have an inverse.

7.14 Transposes
Now that we’ve discussed upper triangular matrices (and strictly upper triangular), it might cross
your mind that we could also discuss lower triangular matrices. In fact we could repeat most of
the same arguments for them, with small modifications, but the transpose provides a way to flip
from one to the other.

In summary the transpose of a matrix is what you get by writing the rows as columns. More
precisely, we can take the transpose of any m× n matrix A. If

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

... . . .
am1 am2 · · · amn
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we write the entries of the first row a11, a12, . . . , a1n down the first column of the transpose, the
entries a21, a22, . . . , a2n of the second row down the second column, etc. We get a new matrix,
which we denote At and is an n×m matrix

At =


a11 a21 · · · am1

a12 a22 · · · am2
... . . .

a1n a2n · · · anm


Another way to describe it is that the (i, j) entry of the transpose in aji = the (j, i) entry of

the original matrix.
Examples are

A =

[
a11 a12 a13
a21 a22 a23

]
, At =

a11 a21
a12 a22
a13 a32



A =

 4 5 6
7 8 9
10 11 12

 , At =

4 7 10
5 8 11
6 9 12


Another way to describe it is that it is the matrix got by reflecting the original matrix in the

“diagonal” line, or the line were i = j (row number = column number).
So we see that if we start with an upper triangular

A =

a11 a12 a13
0 a22 a23
0 0 a33


then the transpose

A =

a11 0 0
a12 a22 0
a13 a23 a33


is lower triangular (has all nonzero entries on or below the diagonal).

7.14.1 Facts about transposes

(i) Att = A (transpose twice gives back the original matrix)

(ii) (A+B)t = At +Bt (if A and B are matrices of the same size).

This is pretty easy to see.

(iii) (kA)t = kAt for A a matrix and k a scalar. (Again it is quite easy to see that this always
works out.)
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(iv) (AB)t = BtAt (the transpose of a product is the product of the transposes taken in the
reverse order — provided the product AB makes sense).

So if A is m×n and B is n×p, then (AB)t = BtAt. Note that Bt is p×n and At is n×m
so that BtAt makes sense and is a p×m matrix, the same size as (AB)t.

The proof for this is a little more of a challenge to write out than the previous things. It
requires a bit of notation and organisation to get it straight. So we won’t do it in detail.
Here is what we would need to do just for the 2× 2 case.

Take any two 2× 2 matrices, which we write out as

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
Then

At =

[
a11 a21
a12 a22

]
, Bt =

[
b11 b21
b12 b22

]
and we can find

AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
, (AB)t =

[
a11b11 + a12b21 a21b11 + a22b21
a11b12 + a12b22 a21b12 + a22b22

]
while

BtAt =

[
b11a11 + b21a12 b11a21 + b21a22
b12a11 + b22a12 b12a21 + b22a22

]
= (AB)t

(v) If A is an invertible square matrix then At is also invertible and (At)−1 = (A−1)t (the
inverse of the transpose is the same as the transpose of the inverse.

Proof. Let A be an invertible n× n matrix. We know from the definition of A−1 that

AA−1 = In and A−1A = In

Take transposes of both equations to get

(A−1)tAt = I tn = In and At(A−1)t = I tn = In

Therefore we have proved that At has an inverse and that the inverse matrix is (A−1)t. So
we have proved the formula (At)−1 = (A−1)t.

7.15 Lower triangular matrices
We can use the transpose to transfer what we know about upper triangular matrices to lower
triangular ones. Let us take 3×3 matrices as an example, though what we say will work similarly
for n× n.
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If

A =

a11 0 0
a21 a22 0
a31 a32 a33


is lower triangular, then its transpose

At =

a11 a21 a31
0 a22 a32
0 0 a33


is upper triangular. So we know that At has an inverse exactly when the product of its diagonal
entries

a11a22a33 6= 0

But that is the same as the product of the diagonal entries of A.
So lower triangular matrices have an inverse exactly when the product of the diagonal entries

is nonzero.
Another thing we know is that (At)−1 is again upper triangular. So ((At)−1)t = (A−1)tt =

A−1 is lower triangular. In this way we can show that the inverse of a lower triangular matrix is
again lower triangular (if it exists).

Using (AB)t = BtAt we could also show that the product of lower triangular matrices [of
the same size] is again lower triangular. (The idea is that BtAt = a product of upper triangulars
is upper triangular and then AB = ((AB)t)t = (BtAt)t = transpose of upper triangular and so
AB is lower triangular.) You can also figure this out by seeing what happens when you multiply
two lower triangular matrices together.

Finally, we could use transposes to show that strictly lower triangular matrices have to be
nilpotent (some power of them is the zero matrix). Or we could figure that out by working it out
in more or less the same way as we did for the strictly upper triangular case.

7.16 Symmetric matrices
A matrix A is called symmetric if At = A. Symmetric matrices must be square as the transpose
of an m× n matrix is n×m. So if m 6= n, then At and A are not even the same size — and so
they could not be equal.

One way to say what ‘symmetric’ means for a square matrix is to say that the numbers in
positions symmetrical around the diagonal equal. Examples are−3 1 −1

1 14 33
−1 33 12

 ,


5 1 2 −3
1 11 25 0
2 25 −41 6
−3 0 6 −15


We won’t come to them this semester but symmetric matrices are useful in several contexts.

In some sense they can be tranformed into diagonal matrices and we’ve seen that diagonal ma-
trices are easy to multiply and invert.
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7.17 Trace of a matrix
Later we will see how to work out a determinant for any square matrix A, a number that ‘de-
termines’ whether or not A is invertible. For diagonal and triangular matrices (upper or lower
triangular) we already have such a number, the product of the diagonal entries. It will be more
complicated to work out though when we look at more complicated matrices.

The trace of a matrix is a number that is quite easy to compute. It is the sum of the diagonal
entries. So

A =

[
1 2
3 4

]
has

trace(A) = 1 + 4 = 5

and

A =

 1 2 3
4 5 6
−7 −8 −6


has

trace(A) = 1 + 5 + (−6) = 0

For 2× 2

A =

[
a11 a12
a21 a22

]
⇒ trace(A) = a11 + a22

and for 3× 3,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

⇒ trace(A) = a11 + a22 + a33

Although the trace of a matrix is easy to calculate, it is not that wonderfully useful. The
properties it has are as follows.

7.17.1 Properties of the trace

(i) trace(A+B) = trace(A) + trace(B) (if A and B are both n× n)

(ii) trace(kA) = k trace(A) (if k is a scalar and A is a square matrix)

(iii) trace(At) = trace(A) (if A is any square matrix)

(iv) trace(AB) = trace(BA) for A and B square matrices of the same size (or even for A
m× n and B an n×m matrix).

The last property is the only one that is at all hard to check out. The others are pretty easy to
see.
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To prove the last one, we should write out the entries of A and B, work out the diagonal
entries of AB and the sum of them. Then work out the sum of the diagonal entries of BA and
their sum. Rearranging we should see we get the same answer.

In the 2× 2 we would take

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
(without saying what the entries are specifically) and look at

AB =

[
a11b11 + a12b21 ∗

∗ a21b12 + a22b22

]
, trace(AB) = a11b11 + a12b21 + a21b12 + a22b22

(where the asterisks mean something goes there but we don’t have to figure out what goes in
those places).

BA =

[
b11a11 + b12a21 ∗

∗ b21a12 + b22a22

]
, trace(BA) = b11a11 + b12a21 + b21a12 + b22a22

If you look at what we got you should be able to see that trace(AB) = trace(BA). The idea is
that now we know this is always going to be true for 2×2 matrices A and B, because we worked
out that the two traces are equal without having to know the values of the entries. So it has to
work no matter what the numbers are that go in A and B.

All we have done is check trace(AB) = trace(BA) in the 2× 2 case. To check it for all the
sizes is not really that much more difficult but it requires a bit of notation to be able to keep track
of what is going on.

March 21: Fix typo in proof of Theorem 7.12.4—.

Richard M. Timoney March 21, 2016
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