
Chapter 5. Infinite series
This material is in Chapter 9 of Anton Calculus.
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5.1 Sequences
An infinite sequence (which we may often call just a sequence) if an infinite list (of numbers)

a1, a2, . . .

Examples would be
1, 2, 3, 4, . . .

where an = n, or

1,
1

22
,
1

32
, . . .

where an = 1/n2, or

1,−1

2
,
1

3!
,− 1

4!
, . . .

where a formula for the nth number in the list is an = (−1)n+1/n!. It is usual to refer to an as
the nth term of the sequence and sometimes to write that we are discussing a sequence

(an)
∞
n=1

rather than listing a1, a2, . . . . So we might say we want to consider the sequence(
1

2n

)∞
n=1

so that we have the formula for the nth term given right away.
Our main concern will be limits of sequences (when they have limits).

5.1.1 Definition (Limit of a sequence). If (xn)∞n=1 is a sequence (of numbers) limn→∞ xn = `
means that xn will certainly be close to ` for all large n.

More precisely we define it by saying that once we decide how close we mean when we
say ‘close to `’ there must be a suitable interpretation of largeness for n to make the previous
assertion true.

If a sequence has a (finite) limit ` we say that it is a convergent sequence.
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5.1.2 Remark. Thinking back over the various kinds of limits you have seen for limits of func-
tions, such

lim
x→a

f(x) = `, lim
x→∞

f(x) = `, lim
x→a

f(x) =∞, lim
x→∞

f(x) =∞,

the definition for the limit of a sequence is most similar to the definition for limx→∞ f(x) = `.
5.1.3 Examples. (i) (Limits of constant sequences) If xn = k ∈ R for all n, then

lim
n→∞

xn = lim
n→∞

k = k

(ii)

lim
n→∞

1

n
= 0

Starting form these (fairly intuitive) examples, we can get quite far by using the next Theo-
rem.

5.1.4 Theorem. Suppose (xn)∞n=1 and (yn)
∞
n=1 are two convergent sequences with limn→∞ xn =

`1 and limn→∞ yn = `2.

(i) (Multiples) For k ∈ R a fixed number,

lim
n→∞

kxn = k`1

(ii) (Sums)
lim
n→∞

xn + yn = `1 + `2

(iii) (Products)
lim
n→∞

xnyn = `1`2

(iv) (Quotients) Provided (yn is never 0 and) `2 6= 0

lim
n→∞

xn
yn

=
`1
`2

This fact about limits of sums, products and quotients is proved in a way that mimics the
proofs of the same results for limits of functions. We omit the proofs.

One thing to notice is that the limit of a sequence depends only on the terms for large n. A
formal way to express that is that if you change just a finite number of terms of a sequence then
you don’t change the limit. Also if the sequence was not convergent, changing a finite number
of terms will still give a sequence with no limit.

In the result about limits of quotients, the hypothesis that `2 6= 0 is somehow more important
than the one about yn 6= 0 for all n. The reason is that if `2 6= 0 then it must be that yn 6= 0 for
all n large enough (large enough that |yn − `2| is smaller than |`2|). So xn/yn will make sense
for all large n if `2 6= 0. Of course then it is a problem that the sequnce of fractions (xn/yn)∞n=1

might not make real sense if yn is ever 0. But we could make some arbitrary convention about
what to replace xn/yn by when yn = 0 and then the result would hold as long as `2 6= 0.
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5.1.5 Examples. (i) An example of a sequence with no limit is the alternating sequence

−1, 1,−1, 1,−1, . . .

which we could describe more succinctly as ((−1)n)∞n=1.

(ii) If xn is given by a rational function of n (meaning xn = p(n)/q(n) where p and q are
polynomials) where the degree of the numerator is no larger than the degree of the denom-
inator, we can find limn→∞ xn by dividing above and below by the highest power of n in
the denominator and using the theorem 5.1.4 and the examples 5.1.3 repeatedly.

For instance

lim
n→∞

4n3 − n2 + 11n+ 102

7n3 + n− 3
= lim

n→∞

4− 1
n
+ 11 1

n2 + 102 1
n3

7 + 1
n2 − 3 1

n3

=
limn→∞ 4− 1

n
+ 11 1

n2 + 102 1
n3

limn→∞ 7 + 1
n2 − 3 1

n3

using Theorem 5.1.4 (iv) — which will be justified once we can show that the limits in the
numerator and denominator do make sense. Looking first at the numerator, we know (by
5.1.3) limn→∞ 4 = 4 and limn→∞ 1/n = 0, hence limn→∞−11/n = 0 (by 5.1.4 (i) and so
limn→∞(4− 11/n) = 4 (by 5.1.4 (ii)). Next limn→∞ 1/n2 = limn→∞(1/n)(1/n) = 0 (by
5.1.4 (iii)) and by the same result on limits of products limn→∞ 1/n3 = limn→∞(1/n

2)(1/n) =
0. Using 5.1.4 (i) and 5.1.4 (ii) again, we deduce

lim
n→∞

(
4− 1

1

n
+ 11

1

n2

)
= lim

n→∞

(
4− 1

1

n

)
+ lim

n→∞
11

1

n2
= 4 + 11(0) = 4

and finally we have the limit of the numerator

lim
n→∞

(
4− 1

1

n
+ 11

1

n2
+ 120

1

n3

)
= lim

n→∞

(
4− 1

1

n
+ 11

1

n2

)
+ lim

n→∞
120

1

n3
= 4+120(0) = 4

Similarly, but compressing the various steps, we have the limit of the denominator

lim
n→∞

(
7 +

1

n2
− 3

1

n3

)
= 7 + 0− 3(0) = 7

and the limit of the original sequence is then justfied as a limit of a quotient

lim
n→∞

4n3 − n2 + 11n+ 102

7n3 + n− 3
=

limn→∞ 4− 1
n
+ 11 1

n2 + 102 1
n3

limn→∞ 7 + 1
n2 − 3 1

n3

=
4

7

5.1.6 Theorem. (useful theorem)

(i) If (xn)∞n=1 is a sequence with limn→∞ xn = ` and f(x) makes sense on both sides of ` and
is continuous at `, then

lim
n→∞

f(xn) = f(`)
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(ii) If limx→∞ f(x) = `f and now (xn)
∞
n=1 is a sequence with limn→∞ xn =∞, then

lim
n→∞

f(xn) = `f

(Strictly we should have defined what limn→∞ xn = ∞ means — it means that xn is large
for all large n. Or, more precisely, if you pick M , then there is N so that

xn > M holds as long as n > N.

So whatever M you decide, or whatever you mean by “xn is large”, then there is a choice
of N or “large n” to make it true that “xn is large for all large n”.)

5.1.7 Example. (i) limn→∞ 1/
√
n = 0 because limx→0

√
|x| = 0 and limn→∞ 1/n = 0 (by

Theorem 5.1.6 (i)). We are using 1/
√
n =

√
1/n.

(ii) Since cosx is continuous everywhere

lim
n→∞

cos

(
π

2
− 1

n

)
= cos

π

2
= 0

(by Theorem 5.1.6 (i)).

(iii) It should not be a surprise that limn→∞ n = ∞. We know from our discussion of the
exponential function that

lim
x→∞

x

ex
= 0

(in fact that ex grows faster than any power of x). So, from Theorem 5.1.6 (ii)),

lim
n→∞

n

en
= 0

(iv) If we put x = ln t in limx→∞
x
ex

= 0 we get

lim
t→∞

ln t

t
= 0

(You might be able re member this as saying that ln t grows [much] more slowly that t as
t→∞.)

Using the theorem, we get

lim
n→∞

lnn

n
= 0

(v)

lim
n→∞

cosn lnn

n
= 0

follows because | cosn| ≤ 1 and so
cosn lnn

n
is closer to 0 than

lnn

n
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5.2 Monotone sequences
5.2.1 Definition. A sequence (xn)

∞
n=1 (in R) is called monotone increasing if xn ≤ xn+1 for

each n.
So that means x1 ≤ x2 ≤ x3 ≤ · · · and it implies that xn ≤ xm if n < m.
A sequence (xn)

∞
n=1 is called monotone decreasing if xn ≥ xn+1 for each n.

A sequence is called monotone is it is either monotone increasing or monotone decreasing.
A sequence (xn)

∞
n=1 is called strictly monotone decreasing if xn > xn+1 for each n.

A sequence (xn)
∞
n=1 is called strictly monotone increasing if xn < xn+1 for each n.

A sequence is called strictly monotone is it is either strictly monotone increasing or strictly
monotone decreasing.

5.2.2 Examples. (i) If xn = 1/n, then (xn)
∞
n=1 =

(
1
n

)∞
n=1

is a monotone decreasing sequence,
in fact a strictly monotone decreasing one.

(ii) On the other hand xn = 1 − 1
n2 is a (strictly) monotone increasing sequence which has

limn→∞ xn = 1 = the smallest number ≥ xn for each n.

(iii) If (xn)∞n=1 is any monotone increasing sequence, then (−xn)∞n=1 is monotone decreasing.

Using this one can prove things about monotone decreasing sequences once one has proved
the similar fact about increasing sequences.

(iv) The sequence ((−1)n)∞n=1 is not monotone.

The following is actually quite a big theorem if we wanted to prove it, but it seems reasonably
obvious if you don’t want to prove it (and we will not).

5.2.3 Theorem. If (xn)∞n=1 is any monotone increasing sequence then either

(i) there is a number M (called an uper bound) so that xn ≤M for each n and in that case

lim
n→∞

xn exists as a finite value

(and it is actually the least possible upper bound, the least M that works)

or

(ii) there is no such upper bound, and in that case

lim
n→∞

xn =∞

5.2.4 Corollary. If (xn)∞n=1 is any monotone decreasing sequence with a lower bound in R (i.e.
a number L so that xn ≥ L holds for all n), then limn→∞ xn exists in R.

5.2.5 Remark. Monotone sequences are then somewhat simpler that general sequences, at least
in terms of whether they have limits or not. If they are bounded they do have (finite) limits.

The term ‘convergent sequence’ is usually reserved for those with finite limits.
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5.3 Series
A series (of real numbers) is in fact just a sequence (xn)

∞
n=1 but we use the word ‘series’ when

we are thinking of adding up the infinite list of numbers, to try and make sense of

x1 + x2 + x3 + · · ·

Such an infinite sum does not make sense without a definition of what it might mean. There
is no theoretical difficulty with any finite sum (though there could be a practical difficulty if the
number of terms is really huge).

5.3.1 Notation. We write
∑∞

n=1 xn to indicate a sequence (xn)
∞
n=1 considered as a series.

The partial sums of a series
∑∞

n=1 xn are the finite sums

sn = x1 + x2 + · · ·+ xn =
n∑

j=1

xj

5.3.2 Definition. A series
∑∞

n=1 xn is called convergent if the sequence of its partial sums has a
finite limit, that is if limn→∞ sn = limn→∞

∑n
j=1 xj exists in R.

If the series
∑∞

n=1 xn is convergent then the limit of the partial sums, limn→∞
∑n

j=1 xj is
defined to be the sum of the series.

In a notation that is totally standard but also potentially confusing,
∑∞

n=1 xn is used for two
things. One is to say that we are discussing a series, wondering then whether or not it converges,
and the other is to represent the sum of the series when it does converge:

∞∑
n=1

xn = lim
n→∞

n∑
j=1

xj

Another term used for convergent series is summable series.

5.3.3 Proposition. (Link to monotone sequences)
If
∑∞

n=1 xn is a series of nonnegative terms then its sequence of partial sums is monotone
increasing.

Proof. As usual we will write sn =
∑n

j=1 xj = x1 + x2 + · · ·+ xn for the nth partial sum.
We can then observe that sn+1 − sn = xn+1 ≥ 0 and so sn ≤ sn+1 always.
This says that (sn)∞n=1 is monotone increasing.

5.3.4 Theorem. If
∑∞

n=1 xn is a series of nonnegative terms then it is convergent if and only if
its sequence of partial sums is bounded above.

(We will skip a detailed proof, but it follows from Theorem 5.2.3 applied to the sequence of
partail sums.)

5.3.5 Examples. There are a small number of series where we can show that they are convergent
and also compute their sums by direct and elementary methods.
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(i) (Telescoping sums)

Suppose the series
∑∞

n=1 xn has nth term

xn =
1

n
− 1

n+ 1

which could also be rewritten

xn =
1

n
− 1

n+ 1
=

(n+ 1)− n
n(n+ 1)

=
1

n2 + n

Then the partial sums are

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

So the sum of the series is
∞∑
n=1

xn = lim
n→∞

sn = lim
n→∞

1− 1

n+ 1
= 1.

(ii) (not such a good example) If xn = 1 for each n, then sn =
∑n

j=1 1 = n and so limn→∞ sn
is infinite. The series

∞∑
n=1

1

does not converge.

(iii) (Geometric series)

Suppose there there is a number r with |r| < 1 and xn = rn−1. The sequence 1, r, r2, . . . is
called a Geometric Progression (or GP) and the corresponding series is called a Geometric
series. At least if r 6= 0 the ratio of successive terms is

xn+1

xn
=
rn+1

rn
= r

(constant ratio r, also known as a common ratio).

There is a formula for the partial sums

sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r

There are various ways to prove this, for instance by induction on n, but a simple proof is
to write down

rsn = r + r2 + r3 + · · ·+ rn
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and subtract that from sn (cancelling all the common terms in the sums) to get

sn − rsn = 1− rn

That gives (1− r)sn = 1− rn and then we can divide by 1− r to get the formula. [By the
way that formula is good for r 6= 1, not just for |r| < 1.]

Now
∞∑
n=1

xn =
∞∑
n=1

rn−1 = lim
n→∞

n∑
j=1

rj−1 = lim
n→∞

1− rn

1− r
=

1

1− r

Here we are relying on limn→∞ r
n = 0 for |r| < 1, which seems like it must be true if you

look at it (but we will not prove carefully).

The main point of the next few results is to get an understanding of which series are con-
vergent (or summable). However the short answer is that it is a rather subtle question, with no
simple method to decide about convergence — at least no method that always works.

5.3.6 Theorem. (Terms must tend to 0)
If
∑∞

n=1 xn is a convergent series, then

lim
n→∞

xn = 0

Proof. Write sn as usual for the nth partial sum sn =
∑n

j=1 xj and s =
∑∞

n=1 xn = limn→∞ sn.
Notice that

sn+1 − sn = (x1 + x2 + · · ·+ xn+1)− (x1 + x2 + · · ·+ xn) = xn+1

Therefore we have

lim
n→∞

xn+1 = lim
n→∞

(sn+1 − sn) = lim
n→∞

sn+1 − lim
n→∞

sn = s− s = 0

It follows that limn→∞ xn = 0 (xn small for large n).

Notice that it is vital that s ∈ R (a finite sum). If we allowed series to have sum∞ (or −∞
either) then we could not make sense of s− s.

5.3.7 Theorem (Integral test). Suppose f : [1,∞)→ [0,∞) is a decreasing continuous function.
Then the series

∞∑
n=1

f(n) converges

if and only if the improper integral∫ ∞
1

f(x) dx = lim
b→∞

∫ b

1

f(x) dx

converges (to a finite value).
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(Note that since f(x) ≥ 0 the integrals
∫ b

1
f(x) dx increase when b increases. If these num-

bers are bounded above, that is if all the integrals are ≤M for some fixed number M , then their
limit exists and is the smalled such upper bound M .)

Proof. The proof is based on the fact that

f(n) ≥ f(x) ≥ f(n+ 1)

for n ≤ x ≤ n+ 1 (because f(x) is decreasing with x) and so∫ n+1

n

f(n) dx ≥
∫ n+1

n

f(x) dx ≥
∫ n+1

n

f(n+ 1) dx

which means

f(n) ≥
∫ n+1

n

f(x) dx ≥ f(n+ 1)

It follows that
n∑

j=1

f(j) ≥
n∑

j=1

∫ j+1

j

f(x) dx ≥
n∑

j=1

f(j + 1)

and so
n∑

j=1

f(j) ≥
∫ n+1

1

f(x) dx ≥
n+1∑
j=2

f(j) =

(
n+1∑
j=1

f(j)

)
− f(1)

So if the series
∑∞

n=1 f(n) converges, there is a finite upper bound s for its partial sums and
we have ∫ n+1

1

f(x) dx ≤
n∑

j=1

f(j) ≤ s

for all n. For any b ≥ 1 we can find n with b ≤ n+ 1 and then∫ b

1

f(x) dx ≤
∫ n+1

1

f(x) dx ≤
n∑

j=1

f(j) ≤ s

So the integrals must be bounded above if the series converges.
On the other hand if there is M ∈ R with

∫ b

1
f(x) dx ≤M for all b ≥ 1, then we have

n+1∑
j=1

f(j) ≤ f(1) +

∫ n+1

1

f(x) dx ≤ f(1) +M

The partial sums of the series
∑∞

n=1 f(n) are bounded above (by f(1) +M ) and so the series
converges (Theorem 5.3.4).

The point of the next example is that Theorem 5.3.6 tells us a property that every convergent
series has, but it does not work in reverse. If limn→∞ xn = 0 it may still be the case that the
series

∑∞
n=1 xn fails to be summable.
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5.3.8 Example. The series
∞∑
n=1

1

n

is not convergent,
(This is a famous example and has a special name — it is called the harmonic series.)

Proof. We already know that
∫∞
1
(1/x) dx does not converge.

By the integral test (Theorem 5.3.7)
∑∞

n=1
1
n

does not converge either.

Here is another straightforward use of the integral test.

5.3.9 Example. The series
∞∑
n=1

1

n2

converges.

Proof. We saw before in Chapter 3 that ∫ ∞
1

1

x2
dx

converges.
By the integral test (Theorem 5.3.7)

∑∞
n=1

1
n

2 converges.

5.3.10 Theorem (Comparison test for series of positive terms). Suppose
∑∞

n=1 xn and
∑∞

n=1 yn
are two series with nonnegative terms (xn ≥ 0 and yn ≥ 0) and suppose xn ≤ yn for each n.
Then

(a) if the larger series
∑∞

n=1 yn converges then so does the smaller series
∑∞

n=1 xn;

(b) if the smaller series
∑∞

n=1 xn does not converge then neither does the larger one
∑∞

n=1 yn.

Proof. Notice that the partial sums of the smaller series are smaller than those of the larger:∑n
j=1 xj ≤

∑n
j=1 yj for each n. Using Theorem 5.3.4, if

∑∞
n=1 yn converges then there is u ∈ R

so that
∑n

j=1 yj ≤ u for all n. But then
∑n

j=1 xj ≤ u also and so
∑∞

n=1 xn converges (using
Theorem 5.3.4). That shows (a). And (b) follows from (a).

5.3.11 Proposition. If
∑∞

n=1 xn and
∑∞

n=1 yn are two convergent series, then
∑∞

n=1(xn + yn) is
also convergent and has sum

∞∑
n=1

(xn + yn) =
∞∑
n=1

xn +
∞∑
n=1

yn

We skip the proof, but is is rather easy.
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5.3.12 Remark. An equally simple fact is that if
∑∞

n=1 xn converges and k is a constant, then

∞∑
n=1

(kxn) = k
∞∑
n=1

xn

5.3.13 Definition. A series
∑∞

n=1 xn is called absolutely convergent if the series
∑∞

n=1 |xn| is
convergent.

5.3.14 Theorem. Absolutely convergent series are convergent.
That is if

∑∞
n=1 |xn| converges, then so does

∑∞
n=1 xn.

This can be proved using the comparison test, put perhaps the proof is a little tricky and so
we will omit it.

5.3.15 Example.
∞∑
n=1

cosn

n2
converges.

Proof. Since | cosx| ≤ 1 always, ∣∣∣cosn
n2

∣∣∣ = | cosn|
n2

≤ 1

n2

Since we know
∑∞

n=1 1/n
2 converges, the comparison test tell us that

∑∞
n=1

∣∣ cosn
n2

∣∣ converges.
So now we know

∑∞
n=1(cosn)/n

2 is absolutely convergent, therefore convergent.

5.3.16 Theorem (Ratio test). Suppose
∑∞

n=1 xn is a series and

r = lim
n→∞

|xn+1|
|xn|

exists (as a finite nonnegative limit or as∞).

(i) if r < 1 then the series is (absolutely) convergent;

(ii) if r > 1 then the series does not converge;

(iii) if r = 1 no conclusion can be drawn about convergence of the series from this information
alone.

Note that the limit we are considering is the limit of the ratio of a term of the series to the
previous one. To be more precise the absolute value of that ratio.

The proof of the ratio test (R < 1 case) relies on comparing the series
∑∞

n=1 |xn| to a geo-
metric series

∑∞
n=1Mρn for some M and ρ with r < ρ < 1. Again we will omit the proof.

5.3.17 Example. For which values of x does
∑∞

n=1

√
nxn converge?

Solution: Although x is a variable, for fixed x we have a series
∑∞

n=1 tn where the nth-term is

tn =
√
nxn



12 2015–16 Mathematics MA1E02

To apply the ratio test, we should evaluate

r = lim
n→∞

|tn+1|
|tn|

= lim
n→∞

|
√
n+ 1xn+1|
|
√
nxn|

= lim
n→∞

√
1 + 1/n|x| = |x|

Since there is a limit we can say that the series definitely converges for |x| < 1 (that is for
−1 < x < 1) and does not converge for |x| > 1. The uncertain values of x are just x = ±1.

In many problems of this type, it can be difficult to deal with these remaining cases. However,
in this example the series for x = 1 is

∑∞
n=1

√
n and for x = −1 it is

∑∞
n=1(−1)n

√
n. Neither

of these can converge because the terms do not tend to 0 as n→∞.

5.4 Power series
5.4.1 Definition. A power series is a series of the form

∞∑
n=0

an(x− a)n

where x is a variable, a is a fixed point called the centre of the series and the numbers a0, a1,
. . . are called the coefficients of the series.

In series of this type it is usual to have a convention that (x − a)0 means 1, even for x = a
(where it would read 00, something that one should not normally attempt to define).

So the power series means

a0 + a1(x− a) + a2(x− a)2 + · · ·

When a = 0 the series looks like

a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

5.4.2 Example. In the previous example we have a = 0 and an =
√
n.

We don’t have any simple formula for the sum of that series. From the formula for the sum
of a geometric series we know

1 + (x− a) + (x− a)2 + · · · =
∞∑
n=0

(x− a)n =
∞∑
n=1

(x− a)n−1 = 1

1− (x− a)

for |x− a| < 1. (Here the coefficient of (x− a)n is an = 1 for each n ≥ 0.)

We now summarise (without any attempt at a proof) some of the main facts about power
series.

5.4.3 Theorem. Let
∑∞

n=1 an(x− a)n be a power series.
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(a) The series has a radius of convergence, a ‘number’ R ≥ 0 with the property that the series
converges for |x− a| < R but fails to converge for any x with |x− a| > R.

However the ‘number’ R may be∞, that is it may be that the power series converges for all
x. (It may also be R = 0, in which case the series converges only for x = a.)

If R > 0 we can define f : (a−R, a+R)→ R by

f(x) =
∞∑
n=1

an(x− a)n

The function f(x) will be diffentiable and its derivative is given by

f ′(x) =
∞∑
n=1

nan(x− a)n−1

for |x− a| < R.

(b) Moreover,if R > 0, the series
∑∞

n=1 nan(x− a)n−1 has the same radius of convergence and
so f ′(x) is differentiable.

(c) In fact, assuming R > 0, f(x) can be differentiated any number of times and the coefficients
an are related to the values of the derivatives at a by

an =
1

n!
f (n)(a).

(d) We can also integrate ‘term by term’ rather than differentiate and say that

∞∑
n=0

an
n+ 1

(x− a)n+1

has the same radius of convergence R and is an antiderivative for f(x) (when |x− a| < R).

5.4.4 Example. The series
∞∑
n=0

1

n!
xn

has radius of convergence R =∞.
To prove that we can use the ratio test to show that the series converges for each x.
For the ratio test we take the limit of the absolute value of the ratios of each term to the term

before

lim
n→∞

∣∣∣ 1
(n+1)!

xn+1
∣∣∣∣∣ 1

n!
xn
∣∣ = lim

n→∞

n!|x|n+1

(n+ 1)!|x|n
= lim

n→∞

|x|
(n+ 1)

= 0

Therefore, by the ratio test, the series converges for all x and that tells usR =∞ is the radius
of convergence.
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It follows then that we can define a function f : R→ R by

f(x) =
∞∑
n=0

1

n!
xn = 1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

and then (according to Theorem 5.4.3) we can calculate f ′(x) by differentiating the series ‘term
by term’. We get

f ′(x) = 0 + 1 +
2x

2!
+

3x2

3!
+ · · · = 1 + x+

x2

2!
+ · · · = f(x)

Since f(0) = 1, we can say that f(x) is ex.
This would justify the existence of f with f ′ = f and f(0) = 1.

5.4.5 Example. We know the sum of a geometric series

1 + x+ x2 + · · · = 1

1− x

for |x| < 1, while the series does not converge for |x| > 1. [Why not? Well the terms xn do not
tend to 0 as n→∞ and so there is no chance that the series can converge if |x| > 1.]

So this a a power series (centered at a = 0) with radius of convergence R = 1. For |x| < 1
we must have the derivative

d

dx

(
1

1− x

)
= 0 + 1 + 2x+ 3x2 + · · · =

∞∑
n=1

nxn

or
1

(1− x)2
=
∞∑
n=1

nxn

Instead of differentiating we could also integrate the series. We get

d

dx

(
x+

x2

2
+
x3

3
+ · · ·

)
=

d

dx

∞∑
n=0

1

n+ 1
xn+1 =

∞∑
n=1

xn−1 = 1 + x+ x2 + · · · = 1

1− x

(for |x| < 1) and so
∞∑
n=1

1

n
xn = − ln(1− x) = ln

(
1

1− x

)
In this way it is possible to arrive at formulae for sums of series. For example take x = 1/2

in the last formula. We get
∑∞

n=1 1/(n2
n) = ln 2.

5.4.6 Remark. If we knew about the exponential function f(x) = ex and we were hoping to
find a series (centered at a = 0 say) that summed to it, we know we would have to take the
coefficients to be

an =
f (n)(a)

n!
=
ea

n!
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(Look at Theorem 5.4.3 (c)). In the case of the exponential function, it turns out that
∑∞

n=0 an(x−
a)n = ex works for all x, but that does not happen for every function. Sometimes it works,
sometimes for all x, sometimes with a finite radius of convergence and sometimes it just does
not work except for x = a.

There is a theorem called Taylor’s theorem which can sometimes be used to prove that f(x)
is given by a power series.

5.4.7 Definition. If f(x) is n-times differentiable at a, then the Taylor polynomial of degree n
for f centered at a is

Pn,f,a(x) =
n∑

j=0

f (j)(a)

j!
(x−a)j = f(a)+f ′(a)(x−a)+ f (2)(a)

2!
(x−a)2+ · · ·+ f (n)(a)

n!
(x−a)n

(Note that they would be the partial sums of the power series, if there was a power series that
gave f(x) near x = a.)

Taylor’s Theorem gives a formula for f(x) − Pn,f,a(x) (which sometimes can be used to
show limn→∞ Pn,f,a(x) = f(x)). We won’t explain that in any more detail.

5.4.8 Remark. For n = 1, the Taylor polynomial of degree 1 is

P1,f,a(x) = f(a) + f ′(a)(x− a)

and the linear approximation formula says that (provided f ′(a) exists)

f(x) ∼= f(a) + f ′(a)(x− a)

is good approximation for x−a small. The idea of Taylor’s theorem is that the quadratic approx-
imation

f(x) ∼= f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2

should be even better (again when x− a is small).
Taylor’s theorem gives a way to analyse the error in an approximation of this kind.

Richard M. Timoney February 26, 2016
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