
Chapter 3. Techniques of integration
This material is in Chapter 7 of Anton Calculus.
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3.1 Recap: Integration in one variable
There are two topics with similar names:

• Reverse of differentiation

Indefinite integral ∫
f(x) dx = most general antiderivative for f(x)

The term ‘antiderivative for f(x)’ means a function whose derivative turns out to be f(x).

• Definite integral

This is related to summation (it is a limit of sums of a certain kind). The integral sign
∫

was originally invented as a modified S (for sum).

There is no reason to expect a connection between these two different things, but there is.

3.1.1 Theorem (Fundamental Theorem of Integral Calculus). Assume that y = f(x) is continu-

ous for a ≤ x ≤ b. Consider A(x) =
∫ x

a

f(t) dt for a ≤ x ≤ b. (A(x) is a new function, built

from f and definite integration.) Then A(x) is an antiderivative for f (that is A′(x) = f(x) for
a ≤ x ≤ b).

In summary:

d

dx

(∫ x

a

f(t) dt

)
= f(x) (a ≤ x ≤ b, if f continuous)
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This is one part of the Fundamental theorem, or one way to state it.

3.1.2 Corollary. There is an antiderivative for every continuous function f .

3.1.3 Example. Find
d

dx

(∫ x

a

1

t
dt

)
Solution: By the theorem

d

dx

(∫ x

a

1

t
dt

)
=

1

x

Well, what about the hypothesis that the integrand, f(t) = 1/t in this example should be
continuous? For that we need to avoid t = 0. We need to suppose that 0 is not in the closed
interval from a to x (or from x to a if x < a).

We also need to assume that for
∫ x

a
1/t dt to make sense, and so perhaps you can say that the

above solution must be right because the question of finding the derivative does not make sense
if 0 is between a and x.

3.1.4 Theorem (Other part of fundamental theorem). Assume that y = f(x) is continuous for
a ≤ x ≤ b and suppose g(x) is an antiderivative for f(x) (that is g′(x) = f(x) for a ≤ x ≤ b).
Then ∫ b

a

f(x) dx = g(b)− g(a)= [g(x)]bx=a

This is familiar. For instance:

3.1.5 Examples. (i) Find
∫ 2

1

e2x dx

Solution: For f(x) = e2x, we need a g(x) with g′(x) = f(x) (an antiderivative). We can
‘guess’ an answer if we notice that

d

dx
e2x = e2x

d

dx
(2x) = e2x(2) = 2e2x

and so
d

dx

1

2
e2x = e2x

That is g(x) = (1/2)e2x works. So∫ 2

1

e2x dx =

[
1

2
e2x
]2
1

=
1

2
e4 − 1

2
e2

(ii) Find
∫ 4

1

1

x
dx

Solution: We learned recently that lnx has derivative 1/x for x > 0. So for f(x) = 1/x
(with x > 0) we can take g(x) = lnx. We get∫ 4

1

1

x
dx = [lnx]41 = ln 4− ln 1
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We can simplify that because ln 1 = 0. So

∫ 4

1

1

x
dx = ln 4

Aside: That would have worked with 4 replaced by any positive value and in fact

∫ b

1

1

x
dx = ln b if b > 0

Switching around some letters, that means

∫ x

1

1

t
dt = lnx if x > 0

An alternative approach to where the functions ex and its inverse lnx come from is to start
by defining lnx =

∫ x

1
1
t
dt, use the form Theorem 3.1.1 of the Fundamental Theorem to

show (d/dx) lnx = 1/x for x > 0, and then derive the other properties of ln. Finally get
to the exponential as the inverse. This is done in Anton §6.6.

Notice that to use Theorem 3.1.4 to evaluate an integral, you need a different way to find
an antiderivative g(x) for the integrand f(x) than Theorem 3.1.1 or Corollary 3.1.2. If you
use Theorem 3.1.1 to find g(x) = A(x), and then use Theorem 3.1.4, you end up saying
that the integral is equal to itself.

3.2 Antiderivatives we know

(Anton §7.1.)

At the end result of our studies will be that we will be able to find a certain number of integrals
using the techniques we will describe. But, unlike differentiation where we can differentiate
almost anything we can write down using the basic rules (including the chain rule, product rule
and quotient rule), with integration it is easy to come across simple-looking things we will not
be able to do. One example is

∫
sin(x2) dx.

For each differentiation formula, we have a corresponding integration formula. Here are ones
we know (mostly).
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Derivative formula Integration formula
d

dx
xn = nxn−1

∫
xn dx =

1

n+ 1
xn+1 + C if n 6= −1

d

dx
lnx =

1

x

∫
1

x
dx = ln |x|+ C

d

dx
ex = ex

∫
ex dx = ex + C

d

dx
xa = axa−1 (x > 0)

∫
xa dx =

1

a+ 1
xa+1 + C if a 6= −1, x > 0

d

dx
sinx = cosx

∫
cosx dx = sinx+ C

d

dx
cosx = − sinx

∫
sinx dx = − cosx+ C

d

dx
tanx = sec2 x

∫
sec2 x dx = tanx+ C

d

dx
secx = secx tanx

∫
secx tanx dx = secx+ C



Techniques of integration 5

Derivative formula Integration formula
d

dx
sin−1 x =

1√
1− x2

(−1 < x < 1)
∫

1√
1− x2

dx = sin−1 x+ C

d

dx
tan−1 x =

1

1 + x2

∫
1

1 + x2
dx = tan−1 x+ C

d

dx
sinhx = coshx

∫
coshx dx = sinhx+ C

d

dx
coshx = sinhx

∫
sinhx dx = coshx+ C

d

dx
tanhx = sech2 x

∫
sech2 x dx = tanhx+ C

d

dx
sinh−1 x =

1√
1 + x2

∫
1√

1 + x2
dx = sinh−1 x+ C

= ln(x+
√
x2 + 1) + C

d

dx
cosh−1 x =

1√
x2 − 1

(x > 1)
∫

1√
x2 − 1

dx = cosh−1 x+ C

= ln(x+
√
x2 − 1) + C

d

dx
tanh−1 x =

1

1− x2

∫
1

1− x2
dx = tan−1 x+ C

=
1

2
ln

1 + x

1− x
+ C (−1 < x < 1)

∫
1

1− x2
dx =

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C

The last of these formulae is not quite one we knew already. It works for x < −1, for
−1 < x < 1 and for x > 1. Also the one that says

∫
(1/x) dx = ln |x| + C needs some

explanation. It is true for x > 0 (we know (d/dx) lnx = 1/x if x > 0 and |x| = x if x > 0. For
x < 0, we have |x| = −x and then

d

dx
ln |x| = d

dx
ln(−x) = 1

−x
(−1) = x (x < 0).

So the formula is correct for either case x > 0 or x < 0 but in fact it is not permissible to cross
from x > 0 to x < 0 in the same discussion (because 1/x does not make sense at x = 0 and
definite integrals of 1/x also won’t make sense if x = 0 is included in the integration).

Apart from these basic integrals, there are integration formulae that follow from the chain
rule for differentiation and the product rule for differentiation. Essentially, when we rearrange
the integral of the two formulae, we get the methods of substitution and integration by parts.
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3.3 Substitution (reminder)

(Anton §4.3.)
Last semester you studied the technique of substitution, which is in essence based on the

chain rule. We recall some simple examples:

3.3.1 Examples. (i) Consider ∫
e2x dx

(which arose earlier and we solved more or less by ‘guessing’). A simple substitution that
works here is u = 2x, leading to du = 2 dx, or dx = 1

2
du and∫

e2x dx =

∫
eu

1

2
du =

∫
1

2
eu du =

1

2
eu + C =

1

2
e2x + C

(ii) Consider the slightly more complicated problem of finding∫
x2 cos(x3) dx

Solution: If we notice that u = x3 has du
dx

= 3x2 and is a factor in the integrand apart from
the constant factor 3, then we can write∫

x2 cos(x3) dx Let u = x3

du

dx
= 3x2

du = 3x2 dx
du

3x2
= dx∫

x2 cos(x3) dx =

∫
3x2 cosu

du

3x2

=

∫
1

3
cosu du

=
1

3
sinu+ C

=
1

3
sin(x3) + C

For a substitution to work, it is usually necessary for du/dx to be a factor in the integrand
(essentially, maybe in a slightly hidden way). It is vital that we express all x’s and dx’s in
terms of u and du.
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3.3.2 Example. For a definite integral like
∫ 5

2
x2 cos(x3) dx, where substitution is useful, we can

work out the indefinite integral as above and then put in the limits, or we can change to limits
for u like this∫ 5

2

x2 cos(x3) dx =

∫ u=53

u=23

1

3
cosu du =

∫ u=125

u=8

1

3
cosu du =

[
1

3
sinu

]u=125

u=8

=
1

3
sin 125−1

3
sin 8

To reiterate, if we make a substitution u = u(x) in a definite integral
∫ b

a
f(x) dx we can

change it to a new definite integral where the limits are the limits for u that correspond to x = a
and x = b: ∫ b

a

f(u(x)) dx =

∫ x=b

x=a

f(u(x)) dx =

∫ u=u(b)

u=u(a)

f(u)
dx

du
du

(and this has the advantage that is says one number is equal to another — no need to go back and
express u in terms of x when you get the antiderivative, something that can be messy in some
examples).

3.4 Integration by parts

(Anton §7.2.)
If we integrate both sides of the product rule

d

dx
(uv) =

du

dx
v + u

dv

dx

we get ∫
d

dx
(uv) dx =

∫
v
du

dx
dx+

∫
u
dv

dx
dx

or

uv =

∫
v
du

dx
dx+

∫
u
dv

dx
dx

This allows us a way of transforming integrals that take the form of a product of one function
times the derivative of another ∫

u
dv

dx
dx = uv −

∫
v
du

dx
dx

into a different integral (where the differentiation has flipped from one factor to the other). The
advantage of this comes if we know how to manage the new integral (or at least if it is simpler
than the original). The integration by parts formula is usually written with the dx’s cancelled∫

u dv = uv −
∫
v du
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3.4.1 Examples. (a)
∫
x lnx dx

Solution: The two most obvious ways to use integration by parts are

• u = x, dv = lnx dx (Problem with this is we can’t find v very easily)

• u = lnx, dv = x dx

It turns out that the second is good.

∫
x lnx dx Let u = ln x dv = x dx

du = 1
x
dx v = x2

2∫
x lnx dx =

∫
u dv

= uv −
∫
v du

= (lnx)
x2

2
−
∫
x2

2

1

x
dx

= (x2/2) lnx−
∫
x

2
dx

= (x2/2) lnx− x2

4
+ C

(b)
∫ e

1

lnx dx

Solution: This is one of a very few cases which can be done by taking dv = dx and u =
the integrand. Every integral takes the form

∫
u dv in that way, but it is rarely a good way to

start integration by parts.

Here we can make use of the definite integral form of the integration by parts formula∫ b

a

u dv = [uv]ba −
∫ b

a

v du

which arises in the same way as the indefinite integral formula (take definite integrals of the
product rule for differentiation).
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∫ e

1

lnx dx Let u = ln x dv = dx
du = 1

x
dx v = x∫ e

1

lnx dx =

∫ e

1

u dv

= [uv]e1 −
∫ e

1

v du

= [(lnx)x]e1 −
∫ e

1

x
1

x
dx

= e ln e− ln 1−
∫ e

1

1 dx

= e− [x]e1
= e− (e− 1) = 1

(c)
∫
x2 cosx dx

Solution:

∫
x2 cosx dx Let u = x2 dv = cos x dx

du = 2x dx v = sin x∫
x2 cosx dx =

∫
u dv

= uv −
∫
v du

= x2 sinx−
∫

sinx(2x) dx

= x2 sinx−
∫

2x sinx dx

The point here is that we have succeeded in simplifying the problem. We started with x2

times a trigonometric function (cosx) and we have now got to x times a trigonometric func-
tion (sinx this time, but that is not so different in difficulty to cosx). If we continue in the
same (or similar) way and apply integration by parts again, we can make the problem even
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simpler. We use U and V this time in case we might get confused with the earlier u and v.1∫
2x sinx dx Let U = 2x dV = sin x dx

dU = 2 dx V = − cosx∫
2x sinx dx =

∫
U dV

= UV −
∫
V dU

= 2x(− cosx)−
∫

(− cosx)2 dx

= −2x cosx+
∫

2 cosx dx

= −2x cosx+ 2 sinx+ C

Combining with the first stage of the calculation∫
x2 cosx dx = x2 sinx+ 2x cosx− 2 sinx− C

and, in fact −C is plus another constant. Since C can be any constant, the answer∫
x2 cosx dx = x2 sinx+ 2x cosx− 2 sinx+ C

is also good.

3.4.2 Remark. We will not in fact learn any other techniques than these which are purely inte-
gration methods. We will spend some time explaining how to make use of these techniques in
specific circumstances (as it is often not at all obvious how to do so). There is one other method
we will come to called partial fractions, a method for integrating fractions such as∫

x+ 2

(x− 1)(x2 + 2x+ 2)
dx

However, the thing we have to learn about is algebra — a way to rewrite fractions like this as
sums of simpler ones — and there is no new idea that is directly integration. The algebra allows
us to tackle problems of this sort.

3.5 Trigonometric Integrals
(Anton §7.3.)

(i) Powers of cosx times powers of sinx with one power odd
Method: For ∫

sinn x cosm x dx

1One thing to avoid is U = v and V = u because this will just unravel what we did to begin with.
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• if n = the power of sinx is odd, substitute u = cosx

• if m = the power of cosx is odd, substitute u = sinx

3.5.1 Example.
∫

sin3 x cos4 x dx

Solution: Let u = cosx, du = − sinx dx, dx =
du

− sinx∫
sin3 x cos4 x dx =

∫
sin3 xu4

du

− sinx

=

∫
− sin2 xu4 du

=

∫
−(1− cos2 x)u4 du

=

∫
−(1− u2)u4 du

=

∫
u6 − u4 du

=
1

7
u7 − 1

5
u5 + C

=
1

7
cos7 x− 1

5
cos5 x+ C

(ii) Powers of cosx times powers of sinx with both powers even

Method: use the trigonometric identities

sin2 x =
1

2
(1− cos 2x), cos2 x =

1

2
(1 + cos 2x)

3.5.2 Example.
∫

sin4 x cos2 x dx

Solution: ∫
sin4 x cos2 x dx =

∫
(sin2 x)2 cos2 x dx

=

∫ (
1

2
(1− cos 2x)

)2(
1

2
(1 + cos 2x)

)
dx

=
1

8

∫
(1− 2 cos 2x+ cos2 2x)(1 + cos 2x) dx

=
1

8

∫
1− cos 2x− cos2 2x+ cos3 2x dx
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Now
∫
1 dx is no bother.

∫
cos 2x dx is not much harder than

∫
cosx dx = sinx + C. If

we look at
d

dx
sin 2x = (cos 2x)2

we can see that
∫
cos 2x dx = 1

2
sin 2x+C. (This can also be done by a substitution u = 2x

but that is hardly needed.) Next∫
cos2 2x dx =

∫
1

2
(1 + cos 4x) dx =

1

2

(
x+

1

4
sin 4x

)
+ C

(using the same ideas as for
∫
cos 2x dx).

For
∫
cos3 2x dx we are in a situation where we have an odd power of cos times a zeroth

power of sin. So we can use the earlier method (the fact that the angle is 2x doe snot make

a big difference) of substituting u = sin 2x. Then du = 2 cos 2x dx, dx =
du

2 cos 2x
,∫

cos3 2x dx =

∫
cos3 2x

du

2 cos 2x

=
1

2

∫
cos2 2x du

=
1

2

∫
1− sin2 2x dx

=
1

2

∫
1− u2 du

=
1

2

(
u− 1

3
u3
)
+ C

=
1

2
sin 2x− 1

6
sin3 2x+ C

Putting all the bits together∫
sin4 x cos2 x dx =

1

8

∫
1− cos 2x− cos2 2x+ cos3 2x dx

=
1

8

(
x− 1

2
sin 2x− 1

2
x− 1

8
sin 4x+

1

2
sin 2x− 1

6
sin3 2x

)
+ C

=
1

16
x− 1

64
sin 4x− 1

48
sin3 2x+ C

(iii) Powers of sinx and cosx

Method: Use the previous two methods treating∫
sinn x dx =

∫
sinn x(cosx)0 dx

and similarly for
∫
cosm x dx (that is treat the second power as the zeroth power).
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3.5.3 Examples. •
∫
cos3 x dx

Solution:
∫
cos3 x dx =

∫
(sinx)0 cos3 x dx. Power of cos odd. Substitute u = sinx,

du = cosx dx, dx =
du

cosx∫
cos3 x dx =

∫
cos3 x

du

cosx

=

∫
cos2 x du

=

∫
1− u2 du

= u− 1

3
u3 + C

= sin x =
1

3
sin3 x+ C

•
∫
sin4 x dx

Solution: Use even powers method.

∫
sin4 x dx =

∫
(sin2 x)2 dx

=

∫ (
1

2
(1− cos 2x)

)2

dx

=
1

4

∫
1− 2 cos 2x+ cos2 2x dx

Note: still have one even power

=
1

4

∫
1− 2 cos 2x+

1

2
(1 + cos 4x) dx

=
1

4

∫
3

2
− 2 cos 2x+

1

2
cos 4x dx

=
1

4

(
3

2
x− sin 2x+

1

8
sin 4x

)
+ C

=
3

8
x− 1

4
sin 2x+

1

32
sin 4x+ C

3.6 Inverse trigonometric substitutions

(Anton §7.4.)
We now consider a class of substitutions which seem quite counter intuitive.
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Recall these
d

dx
sin−1 x =

1√
1− x2

d

dx
tan−1 x =

1

1 + x2

d

dx
cosh−1 x =

1√
x2 − 1

d

dx
sinh−1 x =

1√
x2 + 1

The corresponding substitution methods are:

• integrals involving
√
1− x2, substitute θ = sin−1 x (or it is often more convenient to write

it x = sin θ).

More generally, integrals involving
√
a2 − u2 (with a constant) — try substituting u =

a sin θ (or θ = sin−1(u/a)).

• integrals involving
1

a2 + u2
— try substituting u = a tan θ

• integrals involving
√
u2 − a2 — try substituting u = a cosh t

• integrals involving
√
u2 + a2 — try substituting u = a sinh t

3.6.1 Examples. (i)
∫ √

9− 4(x+ 2)2 dx

Solution: In this case, we have
√
a2 − u2 with a2 = 9, a = 3, u = 2(x + 2) and so our

method says to try u = a sin θ or

2(x+ 2) = 3 sin θ

2 dx = 3 cos θ dθ

dx =
3 cos θ

2
dθ∫ √

9− 4(x+ 2)2 dx =

∫ √
9− 9 sin2 θ

3 cos θ

2
dθ

=

∫ √
9 cos2 θ

3 cos θ

2
dθ

=

∫
3 cos θ

3 cos θ

2
dθ

=
9

2

∫
cos2 θ dθ

=
9

4

∫
1 + cos 2θ dθ

=
9

4
(θ +

1

2
sin 2θ) + C
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To get the answer in terms of x, we need θ in terms of x

2(x+ 2) = 3 sin θ
2

3
(x+ 2) = sin θ

θ = sin−1
(
2

3
(x+ 2)

)
and we could get a correct answer by replacing θ by this everywhere in the answer above.

There is a way to simplify the answer but we won’t go into that.

(ii)
∫ √

−4x2 − 16x− 7 dx

Solution: For quadratics inside a square root like this, what we should do first is complete
the square. That is, rearrange the x2 and x terms so that (with a suitable constant) we get a
multiple of a perfect square

−4x2 − 16x− 7 = −4(x2 + 4x)− 7

= −4(x2 + 4x+ 4− 4)− 7

= −4(x2 + 4x+ 4) + 9

= 9− 4(x+ 2)2

This means that not only is this problem similar to the previous one, it is in fact the same
problem again (now that we completed the square).

3.6.2 Remark. There are in fact many more tricks we could go into.

3.7 Partial Fractions
(Anton §7.5.)

Partial fractions are a technique from algebra, but our reason for dealing with them is that
they can in principle help find every integral of the form∫

p(x)

q(x)
dx

where p(x) and q(x) are polynomials.
Except in a few special cases, we don’t yet know how to find such integrals. One special

case, where we don’t need partial fractions, is where q′(x) = p(x) or q′(x) = αp(x) for some
constant α, because in these cases we can make a substitution u = q(x), du = q′(x) dx and it
will work out nicely. In fact substitution would also work if q(x) = r(x)n for some n ≥ 1 and
r′(x) = αp(x) for a constant α — we can substitute u = r(x), du = r′(x) dx = αp(x) dx,∫

p(x)

q(x)
dx =

∫
p(x)

r(x)n
dx =

∫
p(x)

un
du

αp(x)
=

∫
(1/α)

1

un
du
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The idea of partial fractions is to rewrite p(x)
q(x)

as a sum of fractions with simple denominators
and numerators that are somehow small compared to the denominator. We need to explain exactly
how it goes.

We need to talk about factoring polynomials as much as possible.
To start with, a polynomial is an expression you get by taking a finite number of powers of x

with constant coefficients in front and adding them up. For example

p(x) = 4x2 − x+ 17

or
p(x) = 27x11 + 15x10 − x9 + x8 + 11x2 + 5

are polynomials. The highest power of x that has a nonzero coefficient in front is called the
degree of the polynomial. The examples above have degree 2 and degree 11.

What is handy to know is that when we multiply polynomials, the degrees add. So (x +
1)(x + 5)(x2 + x + 11) will have degree 1 + 1 + 2 = 4 when it is multiplied out. Constant
polynomials have degree 0, except the zero polynomial — we are best not giving any degree to
the zero polynomial.

Now, what kind of polynomial can be factored? For this purpose we don’t consider constant
factors as genuine factors. So

2x2 + 4 = 2(x2 + 2) =
1

3
(6x2 + 12)

will not be counted as a factorization.
Anything of degree 1 certainly cannot be factored then. Some things of degree 2 can be

factored, such as
x2 + 5x+ 4 = (x+ 1)(x+ 4)

but other quadratics cannot be factored if we don’t allow complex numbers to be used. We cannot
factor

x2 + 2x+ 2 = (x− α)(x− β)
because if we could then the roots of x2+2x+2 would be α and β. The roots of x2+2x+2 are

−b±
√
b2 − 4ac

2a
=
−2±

√
4− 8

2
= −1±

√
−1

and these are complex numbers. So α and β would have to be these complex numbers.
A remarkable fact is that every polynomial of degree 3 or more can be factored, at least in

theory. It does not mean it is easy to find the factors, unfortunately. What you can sometimes
rely on to factor polynomials is the Remainder Theorem. Recall that it says that if p(x) is a
polynomial and you know a root x = a (that is a value a so that p(a) = 0), then x − a must
divide p(x).

Using the theory, just as in principle whole numbers can be factored as a product of prime
numbers, so polynomials p(x) with real coefficients can be factored as a product of linear fac-
tors like x − a and quadratic factors x2 + bx + c with complex roots. If the coefficient of the
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highest power of x in p(x) is not 1, then we also need to include that coefficient. So a complete
factorization of

2x2 + 8x+ 2 = (2x+ 4)(x+ 2) = 2(x+ 2)(x+ 2) = 2(x+ 2)2.

For 3x3 + 3x2 + 6x + 6 = 3(x3 + x2 + 2x + 2), you can check that x = −1 is a root and so
x− (−1) = x+ 1 must divide it. We get

3x3 + 3x2 + 6x+ 6 = 3(x+ 1)(x2 + 2)

from long division.
Now we can outline how partial fractions works for a fraction p(x)

q(x)
of two polynomials:

Step 0: (preparatory step). If the degree of the numerator p(x) is not strictly smaller than the
degree of the denominator q(x), use long division to divide q(x) into p(x) and obtain a
quotient Q(x) and remainder R(x). Then

p(x)

q(x)
= Q(x) +

R(x)

q(x)

and degree(R(x)) < degree(q(x)).

We concentrate then on the ‘proper fraction’ part R(x)/q(x).

Step 1: Now factor q(x) completely into a product of linear factors x − a and quadratic factors
x2 + bx+ c with complex roots.

Gather up any repeated terms, so that if (say) q(x) = (x − 1)(x + 2)(x2 + 3)(x + 2) we
would write it as q(x) = (x− 1)(x+ 2)2(x2 + 3).

Step 2: Then the proper fraction
R(x)

q(x)
can be written as a sum of fractions of the following

types:

(i)
A

(x− a)m

(ii)
Bx+ C

(x2 + bx+ c)k

where we include all possible powers (x − a)m and (x2 + bx + c)k that divide q(x). The
A,B,C stand for constants.

As examples, consider the following. We just write down what the partial fractions look
like. In each case, we start with a proper fraction where the denominator is completely factored
already. So some of the hard work is already done.

(i)
x2 + x+ 5

(x− 1)(x− 2)(x− 3)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
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(ii)
x3 + 2x+ 7

(x+ 1)2(x− 4)
=

A1

x+ 1
+

A2

(x+ 1)2
+

A3

x− 4

(iii)
x2 + x+ 11

(x+ 1)(x2 + 2x+ 2)
=

A

x+ 1
+

Bx+ C

x2 + 2x+ 2

(iv)
x4 + x+ 11

(x+ 1)(x2 + 2x+ 2)2
=

A

x+ 1
+

B1x+ C1

x2 + 2x+ 2
+

B2x+ C2

(x2 + 2x+ 2)2

To make use of these, we have to be able to find the numbers A,B,C, . . . that make the
equation true. Take the first example

x2 + x+ 5

(x− 1)(x− 2)(x− 3)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.

To find the appropriate A1, A2, A3, we multiply across by the original denominator (x− 1)(x−
2)(x− 3). This has the effect of clearing all the fractions.

x2 + x+ 5 =
A1

x− 1
(x− 1)(x− 2)(x− 3) +

A2

x− 2
(x− 1)(x− 2)(x− 3)

+
A3

x− 3
(x− 1)(x− 2)(x− 3)

= A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2)

There are two avenues to pursue from here. In this case, method 1 seems easier to me, but in
general method 2 can be as good.

Method 1. Plug in the values of x that make the original denominator (x−1)(x−2)(x−3) =
0.

x = 1 :

1 + 1 + 5 = A1(1− 2)(1− 3) + A2(0) + A3(0)

7 = 2A1

A1 = 7/2

x = 2 :

11 = A1(0) + A2(1)(−1) + A3(0)

= −A2

A2 = −11
x = 3 :

17 = 0 + 0 + A3(2)(1)

A3 = 17/2

So we get
x2 + x+ 5

(x− 1)(x− 2)(x− 3)
=

7/2

x− 1
+
−11
x− 2

+
17/2

x− 3
.
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Our interest in this is for integration. We can now easily integrate∫
x2 + x+ 5

(x− 1)(x− 2)(x− 3)
dx =

∫
7/2

x− 1
+
−11
x− 2

+
17/2

x− 3
dx

=
7

2
ln |x− 1| − 11 ln |x− 2|+ 17

2
ln |x− 3|+ C

Method 2. Multiply out the right hand side.

x2 + x+ 5 = A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2)

= A1(x
2 − 5x+ 6) + A2(x

2 − 4x+ 3) + A3(x
2 − 2x+ 2)

= (A1 + A2 + A3)x
2 + (−5A1 − 4A2 − 2A3)x+ (6A1 + 3A2 + 2A2)

and compare the coefficients on both sides to get a system of linear equations

A1 + A2 + A3 = 1
−5A1 − 4A2 − 2A3 = 1
6A1 + 3A2 + 2A2 = 5

These can be solved (by Gaussian elimination, for example) to find A1, A2, A3.
Method 1 is certainly magic in this case, but there are examples where Method 1 does not get

all the unknown so easily.
Another example. Here is one of our previous examples with the numbers worked out.

x2 + x+ 11

(x+ 1)(x2 + 2x+ 2)
=

11

x+ 1
+
−10x− 11

x2 + 2x+ 2

To find the integral of this,∫
x2 + x+ 11

(x+ 1)(x2 + 2x+ 2)
dx =

∫
11

x+ 1
dx−

∫
10x+ 11

x2 + 2x+ 2
dx

= 11 ln |x+ 1| −
∫

10x+ 11

x2 + 2x+ 2
dx

To work out the remaining integral, we use the method of completing the square x2 + 2x+ 2 =
x2 + 2x + 1 + 1 = (x + 1)2 + 1 and there is a trick. The trick is inspired by the fact that the
substitution u = x2 +2x+2, du = (2x+2) dx = 2(x+1) dx would work if the numerator was
a multiple of x+ 1. What we can do is write∫

10x+ 11

x2 + 2x+ 2
dx =

∫
10x+ 10

x2 + 2x+ 2
dx+

∫
1

x2 + 2x+ 2
dx

and make the u = x2 + 2x + 2 substitution in the first half, while the second is an inverse tan
example. (By substituting w = x+ 1, dw = dx, the second part becomes∫

1

(x+ 1)2 + 1
dx =

∫
1

w2 + 1
dw = tan−1w = tan−1(x+ 1)
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or we might be able to guess that.) We get∫
10x+ 11

x2 + 2x+ 2
dx =

∫
10x+ 10

u

du

2(x+ 1)
+

∫
1

(x+ 1)2 + 1
dx

=

∫
5

u
du+ tan−1(x+ 1)

= 5 ln |u|+ tan−1(x+ 1) + C

= 5 ln(x2 + 2x+ 2) + tan−1(x+ 1) + C

Finally, our integral works out as∫
x2 + x+ 11

(x+ 1)(x2 + 2x+ 2)
dx = 11 ln |x+ 1| − 5 ln(x2 + 2x+ 2)− tan−1(x+ 1) + C

3.8 Improper integrals
(Anton §7.8.)

3.8.1 Remark. Sometimes, integrals that appear to be infinite in extent can be given a finite value
in a way that seems sensible.

For example, consider ∫ ∞
1

1

x2
dx

If we draw a picture of what this might mean graphically, in the same way as we did for integrals∫ b

a
f(x) dx where a and b are finite, we should be looking at the area of the region under the

graph

y =
1

x2
x ≥ 1

— a region that stretches infinitely far into the distance. So it seems infinite and nothing more to
be said.



Techniques of integration 21

But, before we conclude that it is infinite, suppose we imagine colouring in the area under that
graph with paint, and we do it so that we apply the paint evenly so that we use a fixed amount
per square inch. The amount of paint we would need should be infinite if the area is infinite.

We would never be done painting an infinite area, an so we could paint a wide but finite
section and see how much paint we need.

In this picture, we show colouring for 1 ≤ x ≤ 3, but we could replace 3 by any finite b > 1.
The area covered up as far as b works out as∫ b

1

1

x2
dx =

[
−1

x

]b
1

= −1

b
− (−1) = 1− 1

b

and we see that, rather than a huge answer, we always get an answer < 1. In fact as b→∞, the
answer approaches 1. It does not tend to∞. So if we have enough paint to paint 1 square unit
of area, we will never completely run out although there will be very little paint left when b is
large.Maybe there is a case for deciding that

∫∞
1

1/x2 dx should have the value 1.
We make this our definition.

3.8.2 Definition. We define ∫ ∞
1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx

(which is 1).
More generally, if y = f(x) is defined and continuous for x ≥ a we define the improper

integral ∫ ∞
a

f(x) dx = lim
b→∞

∫ b

1

f(x) dx

if this limit exists and is finite. On the other hand if the limit does not exist at all, or is infinite,
we say that the improper integral

∫∞
a
f(x) dx fails to converge.
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3.8.3 Example. Find
∫∞
2

1/x dx.
In this kind of example (an improper integral) we start by using the right definition. This

shows that we realize that there is an issue about the integral making sense, and that we know
how the issue is dealt with. We get∫ ∞

2

1/x dx = lim
b→∞

∫ b

2

1/x dx

= lim
b→∞

[lnx]b2

= lim
b→∞

ln b− ln 2.

If we look at the graph of y = ln x we see that this limit is∞. Because it is not finite, we say
that the improper integral ∫ ∞

2

1

x
dx

does not converge.

Other types of improper integral

Integrals can be improper because of vertical asymptotes, or because the area under the graph
stretches infinitely far away in different ways.

3.8.4 Definition. (i) If y = f(x) is defined and continuous for x ≤ b, then we define the
improper integral ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx

if this limit exists and is finite. If the limit does not exist, or is infinite, we say that the
improper integral

∫ b

−∞ f(x) dx does not converge.

(ii) If y = f(x) is continuous on a finite interval a < x ≤ b, excluding the left end point a
(where it might have an asymptote or other bad behaviour), then we define the improper
integral ∫ b

a

f(x) dx = lim
c→a+

∫ b

c

f(x) dx

if this limit exists and is finite. If the limit does not exist, or is infinite, we say that the
improper integral does not converge.

Example. Consider
∫ 1

0
1/x2 dx.

Using the definition ∫ 1

0

1/x2 dx = lim
c→0+

∫ 1

c

1/x2 dx

= lim
c→0+

[
−1

x

]1
c

= lim
c→0+

−1 + 1

c
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As this limit is infinite, the improper integral
∫ 1

0
1/x2 dx does not converge.

(iii) If y = f(x) is continuous on a finite interval a ≤ x < b, excluding the right end point
b (where it might have an asymptote or other bad behaviour), hen we define the improper
integral ∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx

if this limit exists and is finite. If the limit does not exist, or is infinite, we say that the
improper integral does not converge.

(iv) If an integral is improper for more than one reason, or at a place not one of the endpoints,
we divide it as a sum of improper integrals of the types we have considered above. If each
one of the bits has a finite value, then the value of the whole is the sum. But if any one of
the bits fails to converge then the whole is said not to converge.

3.8.5 Examples. (a)
∫ 1

−1

1

x2
dx

Here the problem with the integral is at 0, where the integrand has an asymptote. In fact we
already worked out that

∫ 1

0
1/x2 dx does not converge and so we know that

∫ 1

−1
1
x2 dx also

does not converge.

This is an example where an unthinking use of integration would produce a wrong answer
−2. (You might be suspicious if the integral of a positive thing in the left to right direction
turned out to be negative.)

(b)
∫ ∞
−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ ∞
0

1

1 + x2
dx

(It does not matter about using 0 as a stopping point. Any finite point would do, for example∫∞
−∞

1
1+x2 dx =

∫ 4

−∞
1

1+x2 dx+
∫∞
4

1
1+x2 dx)

We have an antiderivative tan−1 x for 1
1+x2 and so we can evaluate the first integral easily

∫ 0

−∞

1

1 + x2
dx = lim

a→−∞

∫ 0

a

1

1 + x2
dx = lim

a→−∞
[tan−1 x]0−a = lim

a→−∞
(0− tan−1(−a)) = π

2

The other integral
∫∞
0

1
1+x2 dx also works out at π/2.

(c)
∫ ∞
−∞

1

x(1 + x2)
dx =

∫ 1

−∞

1

x(1 + x2)
dx+

∫ 0

−1

1

x(1 + x2)
dx+

∫ 1

0

1

x(1 + x2)
dx+

∫ ∞
1

1

x(1 + x2)
dx

The original is improper because of the −∞ limit, the asymptotes at x = 0 and the∞ limit.
Each of the 4 bits above has just one problem at one end (and needs to be worked out as a
limit).
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3.9 Using computers to find integrals

We have now concluded our relatively superficial study of methods of finding indefinite integrals.
There is an art to to being able to use the methods well, but really there are not so many more
such methods.

However, as discussed in Anton, there are some other approaches. In §7.6 Anton has a section
called “Using computer algebra systems and tables of integrals”. Tables of integrals have pretty
much become obsolete now, but they are like the lists we have in §3.2 above or page 26 of the
“formulae & tables” produced by the State Examinations Commission — only much longer lists.
You use the tables by trying to spot something in the list that seems to help with your particular
problem.

There are various computer systems that can do this (or something more clever) for you. The
most commercially successful is Mathematica (produced by Wolfram research) and it can do
most calculations you can do by hand (and more). There is a website wolframalpha.com
which provides a kind of Scientific version of Google searches and uses Mathematica behind
the scenes. It is perhaps easier to use than Mathematica itself, as Mathematica wants you to
follow its rules and complains if you don’t (a bit like WileyPlus in that respect). However
wolframalpha.com tries to give an answer no matter what you ask it and so it can be hard
to control it to find the specific answer you want.

Another computer algebra system like Mathematica is called (Waterloo) Maple and it is also
commercial. There is a free thing called SageMath and you can download it (it is very big) or
use it online (see http://www.sagemath.org/). It probably takes a bit of learning before
it would be of use at all.

What is relatively new about computer algebra systems are that (a) they can compute with
symbols, not just with numerical values and (b) modern computers such as your laptop are pow-
erful enough for these systems. So they are in a sense accessible (though several of them are
expensive — however see also
http://www.tcd.ie/itservices/software/kb/student_software.php).

Computing with numbers is what computers were doing for decades after they were invented.
They can still do that, your calculator does it on a small scale, and this sort of use is important for
engineers who will now frequently simulate a machine numerically before attempting to build it.

One aspect of such simulations often comes down to working out definite integrals. How can
a machine calculate a definite integral?

In theory, this is easy. A definite integral
∫ b

a
f(x) dx is defined as a limit of some finite sums

called “Riemann sums”. Assuming a and b are known exact numbers and f(x) is given by a
formula that the computer can evaluate when fed a value for x, the computer can compute a
Riemann sum (with lots of strips, or a fine subdivision of [a, b]). That will give an approximate
value for

∫ b

a
f(x) dx. If the computer does the same calculation more times with finer and finer

partitions, it can get better and better approximations to the right answer.

wolframalpha.com
wolframalpha.com
http://www.sagemath.org/
http://www.tcd.ie/itservices/software/kb/student_software.php
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Refinements

Now that we have stated that it is possible to use the definition directly to compute definite
integrals

∫ b

a
f(x) dx numerically (approximately), why do we need to say more?

Well one question is about efficiency. The method might be refined to be more efficient and
maybe also to be able to say how approximate the answer is that we get. There are questions like
rounding errors that can build up so that longer calculations can become less accurate if not done
right.

But there are also cases where one wants to estimate an integral based on sample values of the
integrand obtained from an experiment or measurement. In those cases, it may not be possible
to keep gathering more data and it may be very desirable to use a method that produces the most
accurate answer possible.

There are two basic methods of evaluating definite integrals
∫ b

a
f(x) dx numerically, based

on valued of the integrand at n+ 1 evenly spaced values of x.

If the spacing is h = (b−1)/n, then we suppose known (from measurements or by calculating
f(x)) the values of y = f(x) for

x = a, x = a+ h, x = a+ 2h, . . . , x = a+ nh = b

We can write xj = a+ jh for j = 0, 1, 2, . . . , n and yj = f(xj).

3.9.1 Trapezoidal rule formula

(Anton §7.7)

∫ b

a

f(x) dx ∼=
h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

Here is a picture for a = 0, b = 2 and n = 4 (a very small n). The formula calculates the
integral of the function with graph made of bits of straight lines linking the points (xj, yj) on the
graph y = f(x). It should be a better estimate of the integral that squaring off the vertical strips
as one does for Riemann sums.
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3.9.2 Simpson’s rule formula

(Anton §7.7) Here the notation is as before but n has to be even.∫ b

a

f(x) dx ∼= h

(
1

3
y0 +

4

3
y1 +

2

3
y2 +

4

3
y3 + · · ·+

2

3
yn−2 +

4

3
yn−1 +

1

3
yn

)
The idea behind this is to replace the actual graph y = f(x) by a graph made up of bits of

quadratic graphs. The first quadratic graph goes through (x0, y0), (x1, y1) and (x2, y2). The next
starts at (x2, y2) and goes through (x3, y3) and ends at (x4, y4) and so on. Just as there is one line
through 2 points, there is one quadratic through 3 points (with different x coordinates) and the
formula comes from working out what that graph is and then its integral.

There are theorems (given in Anton) explaining theoretical worst-case error estimates from
using the Trapezoidal rule or Simpson’s rule. More or less, Simpson’s rule is likely to be more
accurate than the Trapezoidal rule, or to give a guaranteed accuracy with smaller n. Somewhat
more accurately, the worst possible error in the Trapezoidal rule is proportional to h2 and in
Simpson’s rule proportional to h4. If h is fairly small (which means n big since h = (b− a)/n),
h4 will be a lot smaller than h2. However the constants of proportionality can be different, so
that the added accuracy in Simpson’s rule might not kick in for modest values of n you use.

So if you want to calculate ln(2.0) =
∫ 2

1
(1/x) dx and you want to be sure that the answer

you get is good to (say) 4 decimal places, then you can use these theorem to find an n so that the
Trapezoidal rule (or Simpson’s rule) with that n will surely be that accurate.

This idea of a worst-case analysis may be unduly cautious in some cases, and in practice
the methods can often be used without being sure of the errors. In a case where you only have
data, say 11 = 10 + 1 equally spaced values of the integrand, these worst case results won’t be
usable because they depend on knowing f(x) and its derivatives. The methods can still be used
as estimates, but the errors will need to be managed in some other way.

Richard M. Timoney February 17, 2016


	Recap: Integration in one variable
	Antiderivatives we know
	Substitution (reminder)
	Integration by parts
	Trigonometric Integrals
	Inverse trigonometric substitutions
	Partial Fractions
	Improper integrals
	Using computers to find integrals
	Trapezoidal rule formula
	Simpson's rule formula


