
Chapter 2. Exponential and Log functions
This material is in Chapter 6 of Anton Calculus.

The basic idea here is mainly to add to the list of functions we know about (for calculus)
and the ones we will study all have applications. What we know so far are basically algebraic
functions (like polynomials built out of positive integer powers xn, for example f(x) = −1 +
3x − 5x2 + 17x3, more generally rational functions that are quotients f(x) = p(x)/q(x) of
polynomials p(x) and q(x) where q(x) is not identically zero) and trigonometric functions sinx,
cosx, tanx, etc.

We do also know about roots like
√
x and x1/3, which are examples of inverse functions (and

also count as algebraic). Finally we can combine all these by adding, multiplying or applying one
after the other (which is composition of functions g(f(x))). We have enough rules to differentiate
all these — basic rules for derivatives of xn, xr with r ∈ Q a rational, cosx, sinx and so on,
the rules for differentiating sums and constant multiples, the product rule, the quotient rule and
finally the chain rule.

We can differentiate most any f(x) we can write down by a formula, as long as it makes
sense for some intervals of x (and sometimes there are bad points like x = 0 for f(x) = |x| or
f(x) = x1/3 to avoid).

However, life is more complicated for finding antiderivatives. We need more functions to
cope with some quite easy-looking integrals. And the functions we study in this chapter have
practical uses.
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2.1 Exponential function
(More or less as in Anton §6.1.)

One way to define the exponential function f(x) = exp(x) = ex is to say that it is the only
function f : R→ R with the properties

f ′(x) = f(x) and f(0) = 1.

It is perhaps not a good way to define it but it is a valid way.
What it means is that the function y = ex solves a differential equation

dy

dx
= y

We will explain a little later what the number e is and why the nottaion ex is used. For now
we will use f(x) or exp(x).

The drawback of the approach here is how to know that there is a solution of the differential
equation (apart from f(x) = 0 which won’t satisfy f(0) = 1). Leaving this aside until a little
later, it is not hard to check some properties it must have (if there is such a function).

• d

dx
(f(x)f(−x)) = f ′(x)f(−x) + f(x)f ′(−x)(−1) = f(x)f(−x)− f(x)f(−x) = 0.

• So f(x)f(−x) is constant.1 Looking at x = 0 we find that the constant is f(0)f(0) = 1.

• From f(x)f(−x) = 1 for all x, we can conclude that f(x) is never 0.

• It follows that f(x) > 0 for all x.

Proof. This is not that easy to establish carefully. It really needs the Intermediate Value
theorem (discussed in the book, $1.5). That theorem concerns well-behaved functions on
intervals (called continuous functions) that are positive somewhere and negative some-
where else and the conclusion is that the function must be zero in between. Since f(1) =
1 > 0, our function could never be negative.2 Graphically, it is sort of obvious that a graph
can’t get from below the horizontal axis to above, without crossing — but if there was a
gap in the domain, it could.

• Since f ′(x) = f(x) > 0 for all x, it follows that f(x) is strictly increasing on R =
(−∞,∞).3

In particular 1 = f(0) < f(1).

1This really needs the Mean Value Theorem for derivatives, discussed in §3.8 of Anton’s book. It is hard to think
of anything but a constant function that has derivative always zero. As long as the domain has no gaps, there are no
others.

2Differentiable functions such as our f(x) are continuous.
3Again you are used to this, but a correct proof is not so easy. It follows from the Mean Value Theorem.
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• For r ∈ Q,

d

dx
f(rx)(f(x))−r = rf ′(rx)(f(x))−r + f(rx)(−r)(f(x))−r−1f ′(x)

= rf(rx)(f(x))−r − rf(rx)(f(x))−r−1f(x) = 0

can be checked.

So
f(rx)(f(x))−r = constant.

For x = 0 we get
f(0)(f(0))−r = constant

and since f(0) = 1, this tell us that the constant is 1. So

f(rx)(f(x))−r = 1 (all x ∈ R).

Thus f(rx) = (f(x))r (for r ∈ Q).

• In particular f(r) = f(1)r for r ∈ Q.

We define the number e to be e = f(1) and define ex by

ex = f(x).

Note that for x ∈ Q (where we had a sensible way to define ex previously) this is no
change.

Another notation that is commonly used is exp(x) = f(x).

• With this definition, we have the law of exponents ex+a = exea valid for all x, a ∈ R.

Proof. Look at

g(x) =
ex+a

ex
=
f(x+ a)

f(x)
= f(x+ a)f(−x)

(with a fixed) and check that g′(x) = 0. So g(x) is constant. But g(0) = f(a) and so
g(x) = f(a) for all x. Then we have f(x + a)/f(x) = f(a) or f(x + a) = f(x)f(a), as
we wanted.

• We can compute

d

dx

ex

x
=
exx− ex

x2
=
ex(x− 1)

x2
> 0 for x > 1

So ex/x is (strictly) monotone increasing for x > 1. In particular, for x > 2

ex

x
>
e2

2
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and that means that with c = e2/2 we have

ex > cx (x > 2).

As c > 0, we can say that f(x) = exp(x) becomes larger and larger with x.

Using a notation you saw in Anton §1.3,

lim
x→∞

ex =∞

• Since e−x = 1/ex, we can then conclude that ex becomes very small as x becomes large
and negative. So

lim
x→−∞

ex = 0

• Since we now know ex > 0 always, ex is strictly increasing and taking account of the two
previous points, we can say that the graph of y = ex must look something like this

We have not come up with any way to estimate the value of e = f(1), which influences
the graph. The graph seems to run off the page quite quickly to the right and merge into
the x-axis to the left. This is something we can check, at least roughly.

• For n ≥ 1 we can compute that

d

dx

ex

xn
=
exxn − ex(nxn−1)

x2n
=
ex(x− n)
xn+1

> 0 for x > n

So ex/xn is (strictly) monotone increasing for x > n. In particular, for x > n+ 1

ex

xn
>

en+1

(n+ 1)n
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and that means that with cn = en+1/(n+ 1)n we have

ex > cnx
n (x > n+ 1).

So, for n > 1 and x > n+ 2 we have

ex

xn
>
cn+1x

n+1

xn
= cn+1x

and that implies

lim
x→∞

ex

xn
=∞

(since cn+1 > 0).

Conclusion: in the long run ex grows faster that any power xn as x→∞. Or ‘exponential
growth is fast!’.

All this discussion has the drawback that we assumed there was some f(x) defined for all
x ∈ R and satisfying the properties f ′(x) = f(x) and f(0) = 1. In §6.1 in Anton, he says that if
br makes sense for b > 0 and r ∈ Q (which we know), there must be a way to make sense of bx

for all x ∈ R. And then there is a magic number e so that f(x) = ex satisfies the properties we
want.

Another approach, only slightly less mysterious, is to notice that the polynomials

pn(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

(where n! is pronounced n factorial and means the product of the numbers n, n − 1, . . . , 2, 1)
nearly do what we want because

p′n(x) = 0 + 1 + 2
x

2!
+ 3

x2

3!
+ · · ·++n

xn

n!

= 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn−1

(n− 1)!

= pn−1(x)

It is in fact true that xn/n! is small (for a given x) if n is large and so the difference between
p′n(x) and pn(x) looks small. If we take

f(x) = lim
n→∞

pn(x) = lim
n→∞

(
1 + x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!

)
,

it is actually possible to prove that f ′(x) = f(x) and is is really obvious that f(0) = 1.
So this might be a better (less mysterious) starting point for f(x) = exp(x). It is a well-

known formula for ex, called the Taylor series formula. We’ll come back to series in Chapter 9
of Anton, and then this kind of formula will seem more normal.
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2.1.1 Example (Exponential growth/decay). There are several realistic situations where a differ-
ential equation

dy

dx
= ky

arises. In some examples, x is time and so we might be better with

dy

dt
= ky (1)

where now y = y(t) depends on t. The examples include population growth (say of flies, or
animals, where there is no food shortage or environmental change) where y(t) is the number in
the population at time t and k is the difference between the birth rate and the death rate (per
unit time). Another would be radioactive decay, where y(t) is the number of radioactive atoms
in a sample at time t and |k| is the proportion that will decay (and then stop being radioactive)
per unit time. Here k = −|k| < 0. In these examples, we need to assume the number is large
so that considering y(t) to vary continuously (and not just through integer values) is not a big
concern. Another example involves compound interest, where the compounding is done contin-
uously (or over very small time steps). Another example, Newton’s law of cooling, is mentioned
in Anton §6.4, where the unknown function y(t) is the difference between the temperature of an
object at time t and the ambient temperature (though this interpretation of the law involves some
simplifying assumptions).

To see what the solution of (1) are we rewrite it as

dy

dt
− ky = 0

and then multiply across by e−kt to get

e−kt
dy

dt
− ke−kty = 0

The point of this is that now the left hand side is (by the product rule) the derivative of a product.
So we get

d

dt
(e−kty) = 0.

The factor e−kt is known as an ‘integrating factor’ in this situation. (This idea we use here is
discussed more generally in Anton §8.4.) We conclude

e−kty = c = constant

and so y = cekt gives all possible solutions.
Assuming y is a population, we need c > 0. If k > 0 the graph of y against t looks more or

less similar to the graph y = et. The factor k in the exponent re-scales the t axis by 1/k while
the c re-scales the y-axis.

If k < 0, then we need to reflect the exponential graph in the y-axis (and rescale the axes).
2.1.2 Exercise. Using an integrating factor trick, find all the solutions of the differential equation

dy

dx
− 3y = e2x.
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2.2 Inverse functions
(Recall Anton §0.4 and see Anton §6.3.)

In this context it is useful to think of a function y = f(x) as a machine (or black box) that
does something predictable to an input x to produce an output y. Recall the diagram

from Anton §0.4.
The inverse function is supposed to undo what the function does (or do the reverse). So the

inverse function should send y back to x, if the function sends x to y. (Think of reversing the
arrows.)

You may also realise that the qth root function y 7→ y1/q is a kind of inverse of the qth power
function x 7→ xq (or y = xq). This is no problem for odd q (because then xq is increasing on the
whole range −∞ < x <∞), but it is a problem for even q. The problem is that many values of
y came from more than one x (two x’s in fact) and so it is not clear how to choose which x to
send such a y back to.

What we need in order to have an inverse function is that no horizontal line crosses the graph
more than once. So the picture above does not have an inverse function and neither does y = x2

(or y = x4 or y = x6) have a genuine inverse. When we define the square root function to be the
positive square root, we are (rather arbitrarily) deciding to cut down the function y = x2 to the
domain x ≥ 0. The cut-down function then has an inverse.

Here is a handy fact. A monotone function is one that is either increasing or descreasing.

2.2.1 Proposition. If A ⊂ R and f : A → R is a strictly monotone function, then no horizontal
line crosses the graph y = f(x) more than once.

Proof. Let’s take the case where f is strictly monotone increasing. Say there are two points
on the graph y = f(x) which are also on the horizontal line y = y0. That means there are two
different points x1, x2 ∈ Awith (x1, f(x1)) = (x1, y0) and (x2, f(x2)) = (x2, y0). Since x1 6= x2
we must have either x1 < x2 or x2 < x1. If x1 < x2, then f(x1) < f(x2) by definition of what
it means for f to be strictly monotone increasing. But that is not so as f(x1) = f(x2) = y0. On
the other hand if x2 < x1, then f(x2) < f(x1) (which is again not so).

For the case where f is strictly monotone decreasing, we can repeat almost the same argu-
ment, with small changes at the end.
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There is in fact a theorem that says that the converse of the proposition is true for certain nice
functions on intervals (called continuous functions — differentiable functions are included).

We concentrate then on strictly monotone functions f : A → R with A an interval. Usually
the range B = {f(x) : x ∈ A} will also be an interval. (Technically there is a theorem that if
f(x) is continuous on the interval A, then B will be an interval.) The inverse function will be the
function g(y) with domain B given by the rule

g(y) = x exactly when y = f(x).

It is usual to write f−1 rather than g for the inverse function. So we get

f−1(y) = x exactly when y = f(x).

2.2.2 Theorem. If y = f(x) is a function defined on an interval A and if f ′(x) > 0 for all x ∈ A
then x = f−1(y) is differentiable on its domain and has derivative

(f−1)′(y) =
1

f ′(x)
=

1

f ′(f−1(y))
.

If instead f ′(x) < 0 for all x ∈ A, then the same conclusion holds.

This rule is perhaps easier to remember as

dx

dy
=

1

dy/dx
=

1(
dy
dx

) .
We will not prove the theorem as it is quite tricky to prove it correctly. From implicit differenti-
ation is is quite easy to see that that formula for dx/dy has to be right IF we already know that
there is a derivative dx/dy for the inverse function.
2.2.3 Exercise. Check that the theorem gives the right result for the case of the function y = xq

where we restrict x > 0 (and q ∈ N).

2.3 The natural logarithm
(See Anton §6.1.)

The exponential function y = ex has strictly positive derivative for all x ∈ (−∞,∞) = R.
So it will have an inverse function. The domain of the inverse function will be (0,∞) according
to our earlier considerations of the exponential (and its graph).

2.3.1 Definition. The natural logarithm function ln : (0,∞)→ R is the inverse of the exponential
function.

2.3.2 Remark. So if we start with y = ex then

ln y = x means exactly that y = ex.

Exchanging the roles of x and y we get

lnx = y means exactly that x = ey.

Note that lnx only makes sense for x > 0.
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Properties of the natural logarithm

(i) ln e = 1 (because e = e1).

(ii)
d

dx
lnx =

1

x
(for x > 0).

Proof. Write y = lnx, so that x = ey. That tells us

dx

dy
= ey

and so
dy

dx
=

1

ey
=

1

x
.

(iii) For a > 0, ln(1/a) = − ln a.

Proof. Let x = ln a so that ex = a. But then we know e−x = 1/ex = 1/a. So −x =
ln(1/a). That says − ln a = ln(1/a).

(iv) For a, b > 0, ln(ab) = ln a+ ln b.

Proof. Let x = ln a and t = ln b. Then we know ex = a and et = b. From that we have
ab = exet = ex+t and then

ln(ab) = x+ t = ln a+ ln b.

(v) For x > 0 and r ∈ Q, ln(xr) = r lnx.

Proof. Put y = lnx so that ey = x. Then we know (ey)r = ery (from properties of the
exponential) and so xr = ery — which means exactly that ln(xr) = ry = r lnx.

(vi) The graph of the natural logarithm function is obtained by reflecting the graph of the expo-
nential in the diagonal line y = x. That is because the graph of y = lnx is the same as the
graph of ey = x.
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2.4 Arbitrary powers of positive numbers
(See Anton §6.1.)

We were able to prove above that ln(xr) = r lnx for x > 0 and r ∈ Q. Why did we not
prove it for r ∈ R?

The answer is that we have not yet defined xa for x > 0 and a ∈ R. We did define ea =
exp(a), and in that we thought we were on safe ground because er = exp(r) for r ∈ Q.

For x > 0 we do know
x = elnx

(because that is what inverse functions do — one undoes what the other does). So for r ∈ Q we
do know

xr =
(
elnx

)r
= er lnx.

Taking this as a guide we can make it into a definition for arbitrary powers, not just rational
powers.

2.4.1 Definition. For x > 0 and a ∈ R we define

xa = ea lnx (which may be easier to remember as xa = (elnx)a = ea lnx).

2.4.2 Proposition. With this definition the laws of exponents hold: For x, y > 0 and a, b ∈ R we
have

(i) 1/(xa) = x−a

(ii) (xa)b = xab

(iii) xaxb = xa+b

(iv) (xy)a = xaya

This is not hard to prove based on the above definition and the properties of the exponential
that we already know.

2.4.3 Examples. i) For x > 0 and a ∈ R

d

dx
xa =

d

dx

(
elnx

)a
=

d

dx
ea lnx = ea lnxa

1

x
= axax−1 = axa−1.

ii) For a > 0 and x ∈ R

d

dx
ax =

d

dx

(
eln a
)x

=
d

dx
ex ln a = ex ln a ln a = (ln a)ax.

2.4.4 Exercise. Find
d

dx
xx.
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2.5 Inverse trigonometric functions
(See Anton §6.7.)

The trigonometric functions y = sinx, y = cosx, y = tanx (and so on) do not have any
inverse in the ordinary way because horizontal lines often cut their graphs many times. In fact
they are all periodic with period 2π (and tanx has period π), which means that

sin(x+ 2π) = sin x, cos(x+ 2π) = cos x, tan(x+ π) = tan x.

So if we know y = sinx, there is no way to know what x is, no inverse function.
We’ve seen this before. The function y = x2 has no inverse either, but we came up with√
y by taking the positive square root. That is probably unfair discrimination against negative

numbers, but it seems handy to have a square root function.
We do even more drastic things to come up with ‘inverse’ trigonometric functions. Here is

the graph of y = sin x (for −3π ≤ x ≤ 3π) and a graph of a very much restricted y = sin x,
restricted to −π/2 ≤ x ≤ π/2.

The restricted graph is a strictly monotone increasing graph and when we write sin−1 y we mean
the inverse function of this cut down y = sinx. (Some people use the notation arcsin y instead
of sin−1 y. That emphasises that it is not really an inverse function.)

In summary

x = sin−1 y means exactly that sinx = y and − π

2
≤ x ≤ π

2
.

Changing around the names of the variables, we get

2.5.1 Definition. The ‘inverse sin function’ (or arcsin function) is the function sin−1 : [−1, 1]→
[−π/2, π/2] given by

θ = sin−1 x means exactly that sin θ = x and − π

2
≤ θ ≤ π

2
.

2.5.2 Proposition. The derivative of y = sin−1 x is

d

dx
sin−1 x =

1√
1− x2

(−1 < x < 1).
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Proof. If y = sin−1 x, then sin y = x. Taking d/dx of both sides, we get

cos y
dy

dx
= 1

and so
dy

dx
=

1

cos y

(We could also use the result on derivatives of inverse functions to get the same thing.) We want
the answer in terms of x and we use

cos2 y + sin2 y = 1⇒ cos2 y = 1− sin2 y ⇒ cos y =

√
1− sin2 y

(which is true because cos y ≥ 0 when −π/2 ≤ y ≤ π/2). So

dy

dx
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
.

We must exclude x = ±1 to avoid division by 0.

2.5.3 Note. Earlier, we learned that sin2 x means (sinx)2. Now we see that sin−1 x has nothing
to do with a power of sinx. Rather it means the ‘inverse’ function. One might argue that the
notation is potentially misleading!

2.5.4 Exercise. What is the graph of y = sin−1 x?

2.5.5 Definition. The ‘inverse cos function’ (or arccos function) is the function cos−1 : [−1, 1]→
[0, π] given by

θ = cos−1 x means exactly that cos θ = x and 0 ≤ θ ≤ π.

2.5.6 Proposition. The derivative of y = cos−1 x is

d

dx
cos−1 x =

−1√
1− x2

(−1 < x < 1).

The proof is very similar to the one for (d/dx) sin−1 x. Here is the graph of y = cos x
(−3π ≤ x ≤ 3π) and the restricted part of which we take the inverse function.



Exponential and Log functions 13

Here is the graph of y = tanx (−3π ≤ x ≤ 3π) along with the section −π/2 < x < π/2.
The apparently vertical parts of the graph of y = tanx should not be there at all. (That is because
tanx is not defined for x an odd multiple of π/2.)

The section for −π/2 < x < π/2 is strictly monotone increasing and has an inverse function.

2.5.7 Definition. The ‘inverse tan function’ (or arctan function) is the function tan−1 : R →
(−π/2, π/2) given by

θ = tan−1 x means exactly that tan θ = x and − π

2
< θ <

π

2
.

2.5.8 Proposition. The derivative of y = tan−1 x is

d

dx
tan−1 x =

1

1 + x2
(x ∈ R).

The proof is again not that different (but relies on 1 + tan2 θ = sec2 θ).
Here is the graph y = tan−1 x.

2.6 Hyperbolic functions
(See Anton §6.8.)

2.6.1 Definition. The hyperbolic cosine function is denoted coshx and is defined by

coshx =
ex + e−x

2
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2.6.2 Definition. The hyperbolic sine function is denoted sinhx and is defined by

sinhx =
ex − e−x

2

2.6.3 Proposition. For every x ∈ R,

cosh2 x− sinh2 x = 1

Proof.

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
1

4
(e2x + e−2x + 2exe−x − (e2x + e−2x − 2exe−x))

= exe−x = ex−x = e0 = 1

2.6.4 Remark. While (cos θ, sin θ) lies on the unit circle, the above says that (cosh t, sinh t) lies
on the standard hyperbola x2 − y2 = 1. Here is the graph of that hyperbola, and a second
version along with the two lines y = ±x (which are guiding lines that you can use to sketch
the hyperbola). Since cosh t > 0 always, (cosh t, sinh t) lies on right half of the hyperbola. The
value of t does not correspond to an angle in the picture.

2.6.5 Proposition.

d

dx
coshx = sinhx and

d

dx
sinhx = coshx.

2.6.6 Remark. A general principle is that for each formula about trig functions, there is a very
similar formula for hyperbolic functions (but often with minus signs in different places). The
hyperbolic functions are not periodic though.

2.6.7 Remark. It may be of interest to know that the graph of y = coshx has the shape of a
‘catenary’, meaning the shape of a hanging chain (undisturbed by wind). By a ‘chain’ is meant
something like a cable, but one that bends without reistance, yet still has mass.



Exponential and Log functions 15

2.7 Inverse hyperbolic functions
The hyperbolic sine function y = sinhx is strictly monotone increasing because d

dx
sinhx =

coshx = (ex + e−x)/2 > 0 always. So it has an inverse function. For x > 0 we have sinhx =
(ex − e−x)/2 > (ex − 1)/2 (since e−x < e0 = 1 for x > 0, or −x < 0). This shows that
limx→∞ sinhx =∞. As sinh(−x) = − sinhx, we also have limx→−∞ sinhx = −∞.

The hyperbolic cosine function y = coshx is always positive. In fact coshx ≥ cos 0 = 1.
We have d

dx
coshx = sinhx. For x > 0, we have sinhx > sinh 0 = 0 and so coshx is strictly

monotone increasing for x > 0. On the other hand, for x < 0, sinhx < sinh 0 and so coshx is
strictly monotone decreasing for x < 0. Also we have

coshx >
1

2
max(ex, e−x) =

1

2
e|x|

so that limx→∞ coshx = ∞ and also limx→−∞ coshx = ∞. In fact coshx grows very rapidly,
comparably fast to the exponential.

Here are graphs of y = sinhx and y = coshx.

The function y = sinhx has an inverse function sinh−1 : R→ R. We can say then that

y = sinh−1 x means exactly the same as sinh y = x

and the graph of y = sinh−1 x is the reflection of the graph of sinh in the line y = x. We can
find dy/dx for y = sinh−1 x by the theorem on derivatives of inverse functions:

dy

dx
=

1(
dx
dy

) =
1

cosh y

and we can expresse that in terms of x using cosh2 y−sinh2 y = 1, cosh2 y = 1+sinh2 y = 1+x2,
to get

dy

dx
=

d

dx
sinh−1 x =

1√
1 + x2

(and it is right to have the square root because cosh y > 0 always).

2.7.1 Proposition. We can express sinh−1 x in terms of the natural logarithm as

sinh−1 x = ln(x+
√
x2 + 1)
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Proof. We can solve sinh y = x for y in terms of x as folows.

ey − e−y

2
= x

ey − e−y − 2x = 0

(ey)2 − 2xey − 1 = 0

This is a quadradic equation for ey. We get

ey =
2x±

√
4x2 + 4

2
= x±

√
x2 + 1

Since
√
x2 + 1 >

√
x2 = |x|, the minus sign would certainly make ey negative — which is not

possible. So we must have ey = x +
√
x2 + 1, and that means y = ln(x +

√
x2 + 1) as we

required.

For cosh−1, we have to interpret what we mean by the inverse because horizontal lines can
cross the graph of cosh more than once.

2.7.2 Definition. By cosh−1 we mean the function cosh−1 : [1,∞)→ [0,∞) given by the rule

y = cosh−1 x means cosh y = x and y ≥ 0.

We can find the derivative (as long as we don’t go to the end point x = 1) in a similar way to
the way we did above for sinh−1 x. It is

d

dx
cosh−1 x =

1√
x2 − 1

(x > 1).

We can also express cosh−1 via the natural logarithm as

cosh−1 x = ln(x+
√
x2 − 1) (x ≥ 1).

2.7.3 Remark. There is an inverse for y = tanhx = sinhx
coshx

= ex−e−x

ex+e−x . It is given by

tanh−1 x =
1

2
ln

1 + x

1− x
(−1 < x < 1),

and it has derivative
d

dx
tanh−1 x =

1

1− x2
(−1 < x < 1).

Richard M. Timoney February 5, 2016
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