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An even simpler situation is where we take f(z,y,2) = 1 to be the constant function
1. Then
f(z,y,2)dedydz = dedydz = volume = dV

is just the volume of the little tiny piece. When we add these up (or integrate the constant

function 1) we get
/// ldx dydz = total volume.
D

As for double integrals, there is a Fubini Theorem for triple integrals that allows us
to work out [[[, f(x,y,z) dx dy dz by working out three single integrals. The first integral
(or inner integral) should be with respect to one of the variables, keeping the other two
constant. Say we integrate dz first, keeping (x,y) fixed. We should integrate over all z
that give points (z,y,z) € D. At least in simple cases, that will be a range of 2z from a
smallest we might call zo(z,y) to a largest z1(x,y).

In the following picture, there is an attempt to explain this. The curved surface is in
fact the part of the ellipsoid
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where z > 0 and the flat part at the base is where z = 0. A quarter is cut away to allow
us to see inside the object
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For each fixed (x,y) (like the one shown) we have to find the limits for z so that (x,y, z) € D
and it is easy enough to see that the smallest z is zo(z,y) = 0, while the largest is

(e y) = 3\/1 [ g24)2 e ;22)2

obtained by solving for z in terms of (x,y) when (z,y, z) is on the upper (curved) surface.
We can see that the values of (x,y) for which there are any possible z to worry about
are those (z,y) where the square root is a square root of something positive. So, those

(x,y) where
x —4)? —2)?
(=17 -2
32 22
Another way to think of it is that this is the outline of the object when viewed along the

z-direction (from far away).
Anyhow our first integral (if we integrate dz first) is

<1

z=34/1—(z—4)2/9—(y—2)2/4
/ f(z,y,2)dz

=0

Say we next integrate dx, keeping y fixed. The inequality to be satisfied by all the (z,y)
we need to worry about is above and it can be expressed as

[, (y—2) (y —2)?

so that our next integral should be
x=4+31/1—(y—2)2 /4 2=31/1—(2—4)2/9—(y—2)2 /4
/:)::43\/1(1;2)2/4 /z

Finally we have to integrate this dy. The limits for y are those corresponding to the
extreme values of y for points in D. In this case the restriction on y is

flz,y,2) dz) dx

=0

and that turns out to be the same as
—2<y—2<2
or
0<y<4

So in this case [[[,, f(x,y,2)dxdydz is

=0 =4-34/1—(y—2)2/4 =0

y=4 x=4+3,/1—(y—2)2/4 z=34/1—(z—4)2/9—(y—2)2/4
/ / / f(z,y,2)dz | do | dy
Y x z
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It is possible to do the integrals in a different order. Say dy first, then dz and finally
dz. All the limits will be changed if we do that and we would get

z=3 x=4+34/1-22/9 y=2+2+/1—(z—4)2/9—22/9
/z /z4—3, /1-22/9 AQ—Q« /1 (z—4)2/9—22/9

An advantage of being able to choose the order is that sometimes the calculations are
easier in one order than another. A trick that is sometimes useful for working out an
iterated integral like the one we have just written is this:-- figure out which D C R3 it
corresponds to, write the integral as [[[,, f(x,y, z) dx dydz, that is use Fubini’s theorem
in reverse first, and then work out [[/ p f(7,y,2) dvdy dz with Fubini’s theorem using a
different order for the single integrals. Sometimes it turns a hard problem into one that is
easier.

flz,y,2) dy) dx) dz

=0

5 Change of variables in multiple integrals

We now come to a topic that goes by the name ‘substitution’ in the case of ordinary single
integrals. You may recall that substitution for functions of one variable can be justified
using the chain rule

@_ dy du

il when y = y(u), v = u(z),y = y(u(z)).

For indefinite integrals it allows us to say that

if we interpret the right hand side, a function of u, as a function of x by u = u(x). For
definite integrals we can change limits as well as variables and get an equation that says

two numbers are equal.
x=b u=u(b) dr
dr = — du.
| stuyde= [ g G du

=a u=u(a)

The point to remember from this is that when we change from integrating over the
interval [a, b] in x, we must not only change the range of integration to the corresponding
range in the u variable, we must also multiply the integrand by a factor dz/du.

For integrals in two variables (and similarly in three variables) we have to explain what
that factor is that works in a similar way. It is the absolute value of a certain determinant
of partial derivatives. Suppose we change from (z,y) to (u,v) say, we have to change dz dy
into a multiple of du dv and the multiple is

o o
det(% 7 )': Oxdy  Ox Oy
du  Ov

oudv Ovou

<<
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The matrix inside the determinant is called a Jacobian matriz. Its rows are the gradient
vectors of x and y with respect to the u and v variables. The determinant itself is called
a Jacobian determinant.

The rule is then that we must change dx dy to

dx dy =

Oz Oz
det( Gu v )‘ du dv
du v
To change an integral
/ f(z,y)dx dy

to an integral in (u,v) = (u(z,y),v(x,y)), we have to change R to the same set described
in the (u,v) variables and change dz dy as above.
For the case of triple integrals, if we change from (z,y, z) coordinates to

(w,0,w) = (u(z,y, 2),v(z,y, 2), w(z,y, 2))

we have to make a similar change

o dr o
U gv %w
drdydz = |det | £ 22 2Z du dv dw
U gv Qw
z z 0
du v Ow

While this theory can be applied to any change of coordinates, the ones that appear
most often are polar coordinates in the plane (and somewhat related coordinate systems
in space called cylindrical coordinates and spherical coordinates, neither of which we will
discuss).

So we work out what these Jacobian factors are in polar coordinates. We can relate
cartesian (x,y) coordinates in R? to polar coordinates (r, #) via

xr=rcosf, y=rsinfd

and so we can work out the 4 partial derivatives we need for the Jacobian.

g—i = cosf
% = —rsinf
% = gsinf
0
a—‘z = 7rcosf
Then the Jacobian matrix is
( %—f a_g ) B ( cosf —rsin@)
8—3{ a—g sinf rcosf
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The determinant is
rcos? 0 + rsin® @ = r(cos* @ + sin? ) = 7.

The absolute value of the determinant is also r (as long as we keep r > 0 as we usually do
for polar coordinates). This gives us the relation

dx dy = rdrdf

As we have not given any details on how these Jacobian factors are justified, we look
at a picture relating to polar coordinates in the plane. The inner circle has radius 1, the
next has radius 1.1, the next 4 and the outer one 4.1. The rays are at 7/4 and 7/4 4 0.1.

4k

-4

You can see that the area of the ‘polar rectangle’” at (r,0) = (1,7/4) is smaller than the
area of the polar rectangle at (4,7/4). Both rectangles of squares of side 0.1 in polar
coordinates, but it is reasonably clear that the outer one has 4 times the area of the inner
one. In fact a polar rectangle with one corner at (r,#) and opposite corner at (r+dr, 0+d6f)
is a (slightly bent) rectangle in the plane with side lengths dr and r df. This is a way to
see that the r dr df formula is at least plausible.



MA1132 — Lecture 15 (26/3, 30/3 & 6/4/2012) 70

JLl- )

where R = {(z,y) : * + y? < 2}.

This is a problem that works out rather more easily in polar coordinates. We can
describe R in polar coordinates as the points (r,6) with 0 <7 < /2 and 0 < § < 2. In
this way we can express the integral as

2\2
// (8 - (Tz) > rdr df
Putting in the limits

0=2r r=v2 2\2 =2m r=v2 5
/ / (8—(T)>rdr df = / / 87’—T—dr df
0=0 r=0 2 =0 r=0 2

Ezample 5.1. Find
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