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In terms of the graph z = f(x, y) of the whole function of two variables, we can see
the values z = f(x, y0) as those values along the line y = y0 parallel to the x-axis in
the (horizontal) x-y-plane. That means that the graph of the function of one variable
z = f(x, y0) can be got from the whole graph of the function of two variables by taking a
section at y = y0.

Here is an attempt at a picture showing what the section of z = cosx cos y at y = 0.9
looks like:

One is a three dimensional picture cutting away the part of the graph z = f(x, y) where
y < 0.9 and the other is a simple graph of the profile.

What we do now is take the derivative with respect to x of this f(x, y0) and evaluate it
at x = x0. This gives the partial derivative at (x0, y0), the partial derivative with respect
to x. While we denote regular derivatives either by a d/dx or a prime notation, we denote
the partial derivative by ∂/∂x. So the partial derivative evaluated at (x0, y0) is denoted

∂f

∂x
|(x0,y0),

∂z

∂x
|(x0,y0) , or sometimes fx(x0, y0).

(We will mostly use the ∂f/∂x notation rather than the fx notation, but the fx notation
is also used quite often.) We could summarise the definition as

∂f

∂x
|(x0,y0)=

d

dx
|x=x0 f(x, y0)

If we want to see graphically what we are getting, recall that the ordinary derivative
(of a function of one variable) is the slope of the tangent line to the graph at the point.
So if for example, we were taking f(x, y) = cosx cos y, (x0, y0) = (0.5, 0.9) we would be
calculating the slope of this line
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We can calculate this slope (or this derivative) exactly:

f(x, y0) = cosx cos y0

= cos x cos 0.9
d

dx
f(x, y0) = − sinx sin y0

= − sinx sin 0.9
d

dx
|x=x0 f(x, y0) = − sinx0 cos y0

= − sin 0.5 cos 0.9 = −0.298016
∂f

∂x
|(x0,y0) = −0.298016

Looking at the calculation, you can see that what we do is replace y by the constant y0
and then take the derivative d/dx with respect to x (and finally put x = x0). We usually
do it in a slightly quicker way. When taking the partial ∂/∂x with respect to x, we treat
the variable y as a constant. (We don’t have to go so far as to replace y by a specific
number y0.) If we repeat the above calculation this way, it would look like this:

f(x, y) = cosx cos y

∂f

∂x
= − sinx cos y

∂f

∂x
|(x0,y0) = − sinx0 cos y0 = − sin 0.5 cos 0.9

= −0.298016.

Summary: To get the partial derivative with respect to x, take the derivative
with respect to x while treating the variable y as though it was a constant.

Now partial derivatives with respect to y are similar, except we freeze x = x0 and
differentiate with respect to a variable y this time.

∂f

∂y
|(x0,y0)=

d

dy
|y=y0 f(x0, y)
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Or, we can summarise by saying: To get the partial derivative with respect to y, take the
derivative with respect to y treating the variable x as though it was a constant.

Graphically it means taking a section though our graph z = f(x, y) in the x-direction,
and then finding the slope of that.

If we take our example again f(x, y) = cosx cos y, (x0, y0) = (0.5, 0.9), and find the
partial with respect to y this time, we find

f(x, y) = cosx cos y

∂f

∂y
= cos x(− sin y)

= − cosx sin y
∂f

∂x
|(x0,y0) = − cosx0 sin y0 = − cos 0.5 sin 0.9

= −0.687434.

Remark 2.4.2.1. It is necessary to become accustomed to taking partial derivatives. The
rules are as for derivatives of functions of one variable, and so it is a question of getting
practice in these again.

2.4.3 Directional derivatives

With partial derivatives we have concentrated on (vertical) sections in the directions paral-
lel to the two axes (the x-axis for ∂/∂x and the y-axis for ∂/∂y), but there seems to be no
compelling reason to take only the slope of our graph z = f(x, y) in these two directions.

Why should we not consider all possible directions through (x0, y0)? The slope we get
is called a directional derivative.

To explain it, we should find a good way to describe a direction. We know vectors in
the plane have a direction and a magnitude. As we are only interested in a direction, we
can stick to unit vectors (magnitude = 1) u to describe a direction. Going through (x0, y0)
in the direction u we have a line and we know how to describe this line with parametric
equations:

(x, y) = (x0, y0) + tu

At t = 0 we have our point (x0, y0) and we are heading in the direction specified by u. If
we now look at the values of f(x, y) along this line, we get the function

t 7→ f((x0, y0) + tu)

of the parameter (single variable) t. The graph of this function of t is what we would get by
taking a (vertical) section through the graph z = f(x, y). It is the section through (x0, y0)
in the direction u. We are going to take the slope of this section at the point (x0, y0) we
are concentrating on. We can see that the slope is the same1 as the slope of the function

1For this to be true we are relying on the fact that u is a unit vector — if we allowed non unit vectors,
the scale along the t axis would not correspond to the distance scale in the horizontal (x, y) plane, and
this would affect the calculation of the slope.
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of t, that is the same as the derivative with respect to t at t = 0:

d

dt
|t=0 f((x0, y0) + tu)

We define the directional derivative Duf(x0, y0) of f in the direction u at (x0, y0) to be

Duf(x0, y0) =
d

dt
|t=0 f((x0, y0) + tu)

We can notice that if we take u = i = (1, 0) = the unit vector in the direction of the
positive x-axis, then

Duf(x0, y0) = Dif(x0, y0)

=
d

dt
|t=0 f((x0, y0) + ti)

=
d

dt
|t=0 f((x0 + t, y0))

=
d

dx
|x=x0 f(x, y0)

=
∂f

∂x
|(x0,y0)

Similarly for u = j = (0, 1) the directional derivative Djf is the same as ∂f/∂y.
We can compute what Duf(x0, y0) for the example we have used before, that is f(x, y) =

cosx cos y and (x0, y0) = (0.5, 0.9). We’ll work it out for an arbitrary unit vector u =
(u1, u2).

Duf(x0, y0) =
d

dt
|t=0 f((x0, y0) + tu)

=
d

dt
|t=0 f(x0 + tu1, y0 + tu2)

=
d

dt
|t=0 cos(x0 + tu1) cos(y0 + tu2)

= (−u1 sin(x0 + tu1) cos(y0 + tu2)− cos(x0 + tu1)u2 sin(y0 + tu2)) |t=0

= −u1 sinx0 cos y0 − u2 cosx0 sin y0

= − sinx0 cos y0u1 − cosx0 sin y0u2

= −0.298016u1 − 0.687434u2.

You’ll notice that the same numbers are coming in as we had for the partial derivatives.
Of course this was just one example of a very simple kind, and the fact that the directional
derivative involves the same numbers we got from the partial derivatives might be a fluke.
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