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As in the rate of change explanation of the derivative for scalar-valued functions, we
can argue in the case of vector-valued x(t) that x′(t) is a velocity vector, and that it should
be a tangent vector to the curve.

Leaving aside the motivation, we take it as a definition that if x′(t0) is not zero, then
it is the tangent to the parametric curve. We define the line through the point x(t0) in the
direction x′(t0) to be the tangent line to the curve.

One thing that makes this definition satisfactory is that if we drive along the same curve
at a different rate, we get the same tangent direction. To explain that a bit better, suppose
t = t(s) is a monotone increasing function with dt/ds > 0 always. Then y(s) = x(t(s))
defines a new parametric curve, but it traces out the same points as x(t) (even in the same
order). From the ordinary chain rule applied to each of the components we can conclude
that

dy

ds
=

dx

dt

dt

ds

and so y′ has the same direction as x′.

2.4 Functions of two variables

We recall now that a function f : A → B from a set A to a set B is a rule that assigns
one and only one value f(a) in B to each element a ∈ A. So far we have had A ⊆ R. In
single variable analysis we also have B ⊆ R (usually) but in the subsection just above we
had B = Rn (or B ⊆ Rn).

Our goal now is to consider the situation A ⊆ R2 and B ⊆ R. So a function f : A→ B
now has a scalar value f(a) at each point a ∈ A. Expanding a bit, we have a scalar value
f(x, y) at each point (x, y) ∈ A ⊆ R2. This explains the terminology ‘function of two
variables’.

A little later we will probably switch to f(x1, x2) rather than f(x, y). That is more
economical on letters and fits better with generalising formulae to more variables. For now,
we will keep to f(x, y).

So, examples can come from formulae, such as

f(x, y) =
√

x2 + y2 = ‖(x, y)‖

or
f(x, y) = x2 cos2 y + y2 cos2 x

or

f(x, y) =
1

1− (x2 + y2)
.

In that last example, the largest domain we could allow would be A = {(x, y) ∈ R2 :
x2 + y2 6= 1} (the complementary set to the unit circle).
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2.4.1 Graphs of functions of two variables

For functions of one variable (scalar valued), we used the graph as an important way to
picture the function. Notice that we needed a second dimension to fit in the graph. For
functions f(x, y) of two variables, we can also have a graph, but it needs R3 to fit it.

We already need a plane (think of the horizontal plane or the floor) to picture the points
(x, y) in the domain of the function, and then what we do for the graph is plot one point
(x, y, z) with z = f(x, y) the height or altitude of the point above (x, y) in the horizontal
plane.

Examples 2.4.1. (i) For example in the case f(x, y) = 1 + 2x− 3y the graph z = f(x, y)
is

z = 1 + 2x− 3y

and we can recognise that as the equation of a plane

−2x + 3y + z = 1

which has (−2, 3, 1) = −2i+3j+k as a normal vector. Perhaps a way to draw it is to
notice that the plane crosses the axes in (−1/2, 0, 0), (0, 1/3, 0) and (0, 0, 1). (There
is just one plane through 3 points, unless the points are in a line.) Here is a plot of
that plane drawn by the program Mathematica:

(ii) In the case f(x, y) = cos x cos y, we can try to piece together what the graph z =
f(x, y) looks like by looking at sections of the graph where x or y is constant. For
example if we freeze y = 0, we are looking at the section of the whole graph above
the x-axis, where we see z = f(x, 0) = cos x, a standard cosine wave starting at z = 1
when x = 0.

If we look at what happens when x = 0, which is along the y-axis, we get z = f(0, y) =
cos y — the same shape again. If, instead of taking a section with x = 0 we take a
section where x = x0 is some other constant we get the graph z = cosx0 cos y. This is
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a modified version of the regular cosine wave z = cos y, which now oscillates between
z = cosx0 and z = − cosx0. Looking at sections in the perpendicular direction, where
y = y0 is constant we get a similar shape z = f(x, y0) = cos x cos y0 = (cos y0) cosx.

The whole graph z = f(x, y) is a sort of landscape. If we think of the x-axis as
pointing East and the y-axis as pointing North (along the horizontal floor), we have
a landscape that always looks like a cosine wave if we follow it either East-West or
North-South. Perhaps it takes some intuition to see what it is really like and so here
is a picture drawn by Mathematica.

You can see peaks and valleys. The highest points happen when cos x = sin y = 1,
or when cosx = sin y = −1, and there we get z = 1. The lowest points happen when
cosx = 1 and sin y = −1, or when cosx = −1 and sin y = −1. At these lowest points
we get z = −1.

This may be a good place to explain that the altitude z = f(x, y) of the points on a
graph can be negative as well as positive. Negative altitude points happen when the
graph dips below the floor level.

(iii) Next we look at z = x2 + y2, a somewhat easier example to figure out. This is the
graph for f(x, y) = x2 + y2, and if you look to see what happens when y = 0 we get
z = f(x, 0) = x2 + 0, or z = x2. This is a familiar parabola graph of x2. For the
section along the y-axis, where x = 0 we get z = f(0, y) = y2 and this is again the
same shape.

If you take a section of this graph in some other direction from the origin, you get
still the same shape because

f(x, y) = x2 + y2 = (dist((x, y), (0, 0)))2.

When you piece this information together, you can see that this is what the graph
looks like.
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This is a graph that is rotationally symmetric around the z-axis and looks like a
standard parabola (x2 graph) when you take any vertical section through the origin.
It is called a paraboloid and in fact this is the shape for a reflector in a standard
torch (or car head-lamps when they used to be just round). So it is a shape that has
some applications.

2.4.2 Partial derivatives

We move on now to calculus for functions of two variables. There are a number of different
concepts to absorb, but the simplest to explain is the idea of a partial derivative.

Start with a function z = f(x, y) (which we can visualise in terms of its graph) and a
point (x0, y0). To get the partial derivative with respect to x of f(x, y) at the point (x0, y0)
we consider the function of a single variable x that we get by fixing y to be y0. That is the
function x 7→ f(x, y0), or z = f(x, y0).
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