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‘

Theorem 1.4.3 (continued from previous page).

(c) Moreover,if R > 0, the series
∑∞

n=1 nan(x− a)n−1 has the same radius of convergence
and so f ′(x) is differentiable (for |x− a| < R).

(d) In fact, assuming R > 0, f(x) can be differentiated any number of times and the
coefficients an are related to the values of the derivatives at a by

an =
1

n!
f (n)(a).

(e) We can also integrate ‘term by term’ rather than differentiate and say that

∞∑
n=0

an
n + 1

(x− a)n+1

has the same radius if convergence R and is an antiderivative for f(x) (when |x−a| <
R).

Example 1.4.4. The series
∞∑
n=0

1

n!
xn

has radius of convergence R =∞.
To prove that we can use the ratio test (Theorem 1.3.21) to show that the series

converges for each x.
It might be no harm to recall that n! (n factorial) means the product of the numbers

1, 2, . . . , n but we also define 0! = 1. Recall also that x0 = 1 and so our series becomes

1 + x +
1

2!
x2 +

1

3!
x3 + · · · (1)

We stated the ratio test for series indexed from 1 (rather than from 0) but that makes
no essential difference. If we wanted to be fussy we could renumber all the terms of the
power series t1 = 1, t2 = x, t3 = x2/2 and so on.

For the ratio test we take the limit of the absolute value of the ratios of each term to
the term before

lim
n→∞

∣∣∣ 1
(n+1)!

xn+1
∣∣∣∣∣ 1

n!
xn
∣∣ = lim

n→∞

n!|x|n+1

(n + 1)!|x|n
= lim

n→∞

|x|
(n + 1)

= 0

Therefore, by the ratio test, the series converges for all x and that tells us R = ∞ is
the radius of convergence.
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It follows then that we can define a function f : R→ R by

f(x) =
∞∑
n=0

1

n!
xn

and then (according to Theorem 1.4.3) we can calculate f ′(x) by differentiating the series
‘term by term’. It may be easier to see what happens if we look at the series for f(x) in
the form (1). We get

f ′(x) = 0 + 1 +
2x

2!
+

3x2

3!
+ · · · = 1 + x +

x2

2!
+ · · · = f(x)

Do we know any function which is its own derivative? Well yes, the exponential function
ex. In fact we can show via a useful trick that this f(x) is ex.

Lemma 1.4.5. If y = f(x) is any function that satisfies the differential equation

dy

dx
− y = 0

then
y = Cex

for some C (constant).

Proof. There is a trick for this called the method of integrating factors. We multiply both
sides of the equation

dy

dx
− y = 0

by e−x and we get

e−x
dy

dx
− e−xy = 0,

which we can rewrite

e−x
dy

dx
+

(
d

dx
(e−x)

)
y = 0,

and then recognise the left hand side as the derivative of a product

d

dx
(e−xy) = 0.

But then e−xy has to be a constant C, that is

e−xy = C.

Multiply across by ex to get y = Cex
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Corollary 1.4.6.

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · · =

∞∑
n=0

1

n!
xn

Proof. We saw that f(x) =
∑∞

n=0
1
n!
xn satisfies f ′(x) = f(x) (or, in other words, that

y = f(x) solves the differential equation dy/dx = y or dy/dx − y = 0. So by the Lemma
(or the integrating factor trick) we must have y = f(x) = Cex. But for x = 0 we can see
that f(0) = 1 + 0 + 0 + · · · = 1 and we also have f(0) = Ce0 = C. So we must have
C = 1.

Remark 1.4.7. The integrating factor trick can be used to solve linear constant coefficient
differential equations of the first order, that is ones of the form

dy

dx
+ ky = g(x)

for some constant k and some right hand side g(x) depending only on x.
[A differential equation is an equation where the unknown is a function y = f(x) and

the equation involves not only x and y but derivatives of the unknown function y. First
oder means only the first derivative. Linear means the equation is linear in y.]

The trick is to multiply by ekx and then the left hand side becomes the derivative of a
product. We get

d

dx
(ekxy) = g(x)ekx

Provided we can find an antiderivative (indefinite integral) h(x) for g(x)ekx, that is a
function h(x) with h′(x) = g(x)ekx, we now have

d

dx
(ekxy) = h′(x)

or
d

dx
(ekxy − h(x)) = 0

and so ekxy − h(x) = C = a constant. Rearrange this to get y (up to not knowing C —
we need another bit of information to find C).

Example 1.4.8. We know the sum of a geometric series

1 + x + x2 + · · · = 1

1− x

for |x| < 1, while the series does not converge for |x| > 1. [Why not? Well the terms xn do
not tend to 0 as n→∞ and so there is no chance that the series can converge if |x| > 1.
That’s what Theorem 1.3.4 says.]
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So this a a power series (centered at a = 0) with radius of convergence R = 1. For
|x| < 1 we must have the derivative

d

dx

(
1

1− x

)
= 0 + 1 + 2x + 3x2 + · · · =

∞∑
n=1

nxn

or
1

(1− x)2
=
∞∑
n=1

nxn

Instead of differentiating we could also integrate the series. We get

d

dx

(
x +

x2

2
+

x3

3
+ · · ·

)
=

d

dx

∞∑
n=0

1

n + 1
xn+1 =

∞∑
n=1

xn−1 = 1 + x + x2 + · · · = 1

1− x

(for |x| < 1) and so
∞∑
n=1

1

n
xn = − ln(1− x) = ln

(
1

1− x

)
In this way it is possible to arrive at formulae for sums of series. For example take

x = 1/2 in the last formula. We get
∑∞

n=1 1/(n2n) = ln 2.

Remark 1.4.9. If we knew about the exponential function f(x) = ex and we were hoping
to find a series (centered at a = 0 say) that summed to it, we know we would have to take
the coefficients to be

an =
f (n)(a)

n!
=

ea

n!

(Look at Theorem 1.4.3 (d)). In the case of the exponential function, it turns out that∑∞
n=0 an(x − a)n = ex works for all x, but that does not happen for every function.

Sometimes it works, sometimes for all x, sometimes with a finite radius of convergence and
sometimes it just does not work expect for x = a.

There is a theorem called Taylor’s theorem which can sometimes be used to prove that
f(x) is given by a power series.

Definition 1.4.10. If f(x) is n-times differentiable at a, then the Taylor polynomial of
degree n for f centered at a is

Pn,f,a(x) =
n∑

j=0

f (j)(a)

j!
(x−a)j = f(a)+f ′(a)(x−a)+

f (2)(a)

2!
(x−a)2+ · · ·+ f (n)(a)

n!
(x−a)n

(Note that they would be the partial sums of the power series, if there was a power
series that gave f(x) near x = a.)

Taylor’s Theorem gives a formula for f(x)−Pn,f,a(x) (which sometimes can be used
to show limn→∞ Pn,f,a(x) = f(x)). We won’t explain that in any more detail.
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