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Theorem 1.3.18 (Comparison test — improved version). Suppose Y o, and Y~ Yy
are two series and suppose |x,| <y, for each n. Then

(a) if the larger (nonnegative) series Y |y, converges then the smaller series Y .~ | T,
converges (absolutely);

(b) if the smaller series Y~ | ., does not converge then neither does the larger one "~ | Y.

Proof. This really is just a combination of the previous version of the comparison test (for
series of nonnegative terms) with remarks above about absolute convergence.

If Yy, converges then » >, |z,| converges by the previous version of this test
(Theorem 1.3.8 (a)). But that means exactly that Y | x,, is absolutely convergent, hence
convergent by Theorem 1.3.16.

If Y°>° | @, is not convergent, then it can’t be absolutely convergent (because of Theorem
1.3.16), which says that )", |z, | does not converge. Then >~ y, can’t converge because
of previous version of this test (Theorem 1.3.8 (b)). O

To exhibit examples of series that are convergent but not absolutely convergent there
is the following test.

Theorem 1.3.19 (Alternating series test). Suppose > >~ | x,, is a series where the terms
alternate in sign (so that T,1/x, < 0 always). Assume also that the absolute values of the
terms are decreasing to 0, that s

] = foal > fas] = - > || =[] = -+ and lim ,, = 0.
n—oo

Then the series is convergent.

Proof. We'll prove it for the case where the first term x; > 0. The case where x; < 0 would
be similar or we could change to the first case by multiplying by —1 (so that >~ (—z,)
converges by the first case and then we can multiply by —1 again to get that > >~ ,
converges).

Consider the partial sums s, = Z?Zl x; and focus first on the even partial sums. We
can group the terms in pairs so that

n

Sop = (931 + {EQ) + (933 + 1'4) + - ($2n_1 + $2n) = Z(l‘gj_l + [L’Qj)
j=1

But all these bracketed sums of two successive terms are positive (or at least nonnegative)
because x9;_1 > 0, x9; < 0 and

Toj_1 + a5 = |T95-1| — |725] > 0.
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Therefore the sequence of even partial sums (s3,)32; is monotone increasing. If we can
show that it is bounded above then the even partial sums will have a limit and we will be
nearly done.

If we look at the odd partial sums in a similar way we see that they can be written

Son—1 = X1 + (xa + x3) + (x4 + x5) + - - + (T2n—1 + Ton—1)

and the bracketed sums of two successive terms are now all negative (or not positive because
Toj—2 + Toj_1 = —|T2j_1] + |z2;] <0). So they are decreasing x; = 53 > 53 > 55 > - - -.
Now
Son = Sop—1 + Ton < Sop—1 < 51 = T4

and so the even partial sums are bounded above (by the first term x;). So

lim so,
n—0o0

exists (as a finite limit). We need to know that the odd partial sums have the same limit,
but that is not so hard to see because

Sopt1 = Son + Tant1
and lim,, o Topt1 = 0. O

Example 1.3.20. For p > 0, the series

= (=1)" ! 1 1 1 1
Zg_l__+___+__...
n=1 nb

converges (by the alternating series test) but it is not absolutely convergent if 0 < p < 1.

Proof. The ratio of successive terms is negative, the absolute values |(—1)""!/n?| = 1/n?
are decreasing with n and lim,,_,., 1/n? = 0.

We know the series of absolute values >~ 1/n? fails to converge for 0 < p <1 (see
Examples 1.3.9 (iii) where p < 0 is included also — but the alternating series test does
not apply to Y oo (—1)""'/nP for p < 0 because the terms don’t decrease in absolute
value). O

Theorem 1.3.21 (Ratio test). Suppose Y .~ x, is a series and

r = lim
n—oo | X,

exists (as a finite nonnegative limit or as o).
(1) if r <1 then the series is (absolutely) convergent;

(i1) if r > 1 then the series does not converge;
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(111) if r = 1 no conclusion can be drawn about convergence of the series from this infor-
mation alone.

Note that the limit we are considering is the limit of the ratio of a term of the series to
the previous one. To be more precise the absolute value of that ratio.

Proof. Suppose r < 1 first. Put p = (1 +1)/2 so that r < p < 1. Since the limit of
|Zpi1]/|2n] is r and 7 < p, eventually we must have |x,.1|/|z.| < p.

In more precise terms (by using ¢ = p — r in the e-N definition of the limit), there is
N so that
|Zpt1]

n>N=
’xn’

<p

The idea is to compare the series > >~ | x,, to a suitable multiple of the geometric series

220:1 P

We take the mutltiple big enough to deal with all terms up to xx1, that is we take

k = max M
1<j<N+1 pi=t
So then we have |z;| < kp/~! for j =1,2,..., N + 1. We can then deduce that

TN +2 (N+2)—1

< p=|ongo| < plni] < pkpN T =kp
[N

and show by induction that
|2y < kp™D=! for all j € N.
Combining that with the way we picked k£ we have
] < kp" !
for all n. Since Y > | kp" ! converges (it is k> -, p" ' =k/(1—p)), the comparison test
tells us that Y ° | x,, converges (in fact converges absolutely). O

Ezample 1.3.22. For which values of x does >~ \/nz" converge?
Solution: Although x is a variable, for fixed x we have a series >~ ¢, where the n''-term
is

To apply the ratio test, we should evaluate

Y R (VR Eia R
=1 = lim —— =1 1+1 =
(S v v A

Since there is a limit we can say that the series definitely converges for |z| < 1 (that
is for —1 < 2 < 1) and does not converge for |z| > 1. The uncertain values of = are just
r = =*£1.

In many problems of this type, it can be difficult to deal with these remaining cases.
However, in this example the series forx = 1is >~ \/nand forz = —1itis Y~ (—1)"y/n.
Neither of these can converge because the terms do not tend to 0 as n — oc.
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1.4 Power series

Definition 1.4.1. A power series is a series of the form

Z an(x —a)"

where x is a variable, a is a fixed point called the centre of the series and the numbers ag,
ai, ...are called the coefficients of the series.
In series of this type it is usual to have a convention that (z — a)" means 1, even for
x = a (where it would read 0°, something that one should not normally attempt to define).
So the power series means

ap+a1(z —a) + az(x —a)® + - -
When a = 0 the series looks like

o
ap + a1z + agr? + - = E A"
n=0

FEzample 1.4.2. In the previous example we have a = 0 and a,, = y/n.
We don’t have any simple formula for the sum of that series. From the formula for the
sum of a geometric series we know

1+(JZ—CL)+(JI—@)2_|_...:Z(x_a)nzz(x_a)n_lzm

for | —a| < 1. (Here the coefficient of (x — a)" is a,, = 1 for each n > 0.)

We now summarise (without any attempt at a proof) some of the main facts about
power series.

Theorem 1.4.3. Let Y 7 a,(x —a)™ be a power series.

(a) The series has a radius of convergence, a ‘number’ R > 0 with the property that the
series converges for |x — a| < R but fails to converge for any x with |z — a| > R.

However the ‘number’” R may be oo, that is it may be that the power series converges
for all z. (It may also be R =0, in which case the series converges only for x = a.)

(b) If R > 0 we can define f: (a — R,a+ R) — R by
f@) = Y anle —
n=1
The function f(x) will be diffentiable and its derivative is given by
Fi@) = 3 (e —
n=1

for |x —a| < R.
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