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Theorem 1.3.18 (Comparison test — improved version). Suppose
∑∞

n=1 xn and
∑∞

n=1 yn
are two series and suppose |xn| ≤ yn for each n. Then

(a) if the larger (nonnegative) series
∑∞

n=1 yn converges then the smaller series
∑∞

n=1 xn
converges (absolutely);

(b) if the smaller series
∑∞

n=1 xn does not converge then neither does the larger one
∑∞

n=1 yn.

Proof. This really is just a combination of the previous version of the comparison test (for
series of nonnegative terms) with remarks above about absolute convergence.

If
∑∞

n=1 yn converges then
∑∞

n=1 |xn| converges by the previous version of this test
(Theorem 1.3.8 (a)). But that means exactly that

∑∞
n=1 xn is absolutely convergent, hence

convergent by Theorem 1.3.16.
If
∑∞

n=1 xn is not convergent, then it can’t be absolutely convergent (because of Theorem
1.3.16), which says that

∑∞
n=1 |xn| does not converge. Then

∑∞
n=1 yn can’t converge because

of previous version of this test (Theorem 1.3.8 (b)).

To exhibit examples of series that are convergent but not absolutely convergent there
is the following test.

Theorem 1.3.19 (Alternating series test). Suppose
∑∞

n=1 xn is a series where the terms
alternate in sign (so that xn+1/xn < 0 always). Assume also that the absolute values of the
terms are decreasing to 0, that is

|x1| ≥ |x2| ≥ |x3| ≥ · · · ≥ |xn| ≥ |xn+1| ≥ · · · and lim
n→∞

xn = 0.

Then the series is convergent.

Proof. We’ll prove it for the case where the first term x1 > 0. The case where x1 < 0 would
be similar or we could change to the first case by multiplying by −1 (so that

∑∞
n=1(−xn)

converges by the first case and then we can multiply by −1 again to get that
∑∞

n=1 xn
converges).

Consider the partial sums sn =
∑n

j=1 xj and focus first on the even partial sums. We
can group the terms in pairs so that

s2n = (x1 + x2) + (x3 + x4) + · · · (x2n−1 + x2n) =
n∑

j=1

(x2j−1 + x2j)

But all these bracketed sums of two successive terms are positive (or at least nonnegative)
because x2j−1 > 0, x2j < 0 and

x2j−1 + x2j = |x2j−1| − |x2j| ≥ 0.
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Therefore the sequence of even partial sums (s2n)∞n=1 is monotone increasing. If we can
show that it is bounded above then the even partial sums will have a limit and we will be
nearly done.

If we look at the odd partial sums in a similar way we see that they can be written

s2n−1 = x1 + (x2 + x3) + (x4 + x5) + · · ·+ (x2n−1 + x2n−1)

and the bracketed sums of two successive terms are now all negative (or not positive because
x2j−2 + x2j−1 = −|x2j−1|+ |x2j| ≤ 0). So they are decreasing x1 = s1 ≥ s3 ≥ s5 ≥ · · · .

Now
s2n = s2n−1 + x2n ≤ s2n−1 ≤ s1 = x1

and so the even partial sums are bounded above (by the first term x1). So

lim
n→∞

s2n

exists (as a finite limit). We need to know that the odd partial sums have the same limit,
but that is not so hard to see because

s2n+1 = s2n + x2n+1

and limn→∞ x2n+1 = 0.

Example 1.3.20. For p > 0, the series

∞∑
n=1

(−1)n−1

np
= 1− 1

2p
+

1

3p
− 1

4p
+

1

5p
− · · ·

converges (by the alternating series test) but it is not absolutely convergent if 0 < p ≤ 1.

Proof. The ratio of successive terms is negative, the absolute values |(−1)n−1/np| = 1/np

are decreasing with n and limn→∞ 1/np = 0.
We know the series of absolute values

∑∞
n=1 1/np fails to converge for 0 < p ≤ 1 (see

Examples 1.3.9 (iii) where p ≤ 0 is included also — but the alternating series test does
not apply to

∑∞
n=1(−1)n−1/np for p ≤ 0 because the terms don’t decrease in absolute

value).

Theorem 1.3.21 (Ratio test). Suppose
∑∞

n=1 xn is a series and

r = lim
n→∞

|xn+1|
|xn|

exists (as a finite nonnegative limit or as ∞).

(i) if r < 1 then the series is (absolutely) convergent;

(ii) if r > 1 then the series does not converge;
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(iii) if r = 1 no conclusion can be drawn about convergence of the series from this infor-
mation alone.

Note that the limit we are considering is the limit of the ratio of a term of the series to
the previous one. To be more precise the absolute value of that ratio.

Proof. Suppose r < 1 first. Put ρ = (1 + r)/2 so that r < ρ < 1. Since the limit of
|xn+1|/|xn| is r and r < ρ, eventually we must have |xn+1|/|xn| < ρ.

In more precise terms (by using ε = ρ − r in the ε-N definition of the limit), there is
N so that

n > N ⇒ |xn+1|
|xn|

< ρ

The idea is to compare the series
∑∞

n=1 xn to a suitable multiple of the geometric series∑∞
n=1 ρ

n.
We take the mutltiple big enough to deal with all terms up to xN+1, that is we take

k = max
1≤j≤N+1

|xj|
ρj−1

.

So then we have |xj| ≤ kρj−1 for j = 1, 2, . . . , N + 1. We can then deduce that

|xN+2|
|xN+1|

< ρ⇒ |xN+2| < ρ|xN+1| ≤ ρkρN+1−1 = kρ(N+2)−1

and show by induction that

|xN+j| ≤ kρ(Nj)−1 for all j ∈ N.

Combining that with the way we picked k we have

|xn| ≤ kρn−1

for all n. Since
∑∞

n=1 kρ
n−1 converges (it is k

∑∞
n=1 ρ

n−1 = k/(1− ρ)), the comparison test
tells us that

∑∞
n=1 xn converges (in fact converges absolutely).

Example 1.3.22. For which values of x does
∑∞

n=1

√
nxn converge?

Solution: Although x is a variable, for fixed x we have a series
∑∞

n=1 tn where the nth-term
is

tn =
√
nxn

To apply the ratio test, we should evaluate

r = lim
n→∞

|tn+1|
|tn|

= lim
n→∞

|
√
n+ 1xn+1|
|
√
nxn|

= lim
n→∞

√
1 + 1/n|x| = |x|

Since there is a limit we can say that the series definitely converges for |x| < 1 (that
is for −1 < x < 1) and does not converge for |x| > 1. The uncertain values of x are just
x = ±1.

In many problems of this type, it can be difficult to deal with these remaining cases.
However, in this example the series for x = 1 is

∑∞
n=1

√
n and for x = −1 it is

∑∞
n=1(−1)n

√
n.

Neither of these can converge because the terms do not tend to 0 as n→∞.
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1.4 Power series

Definition 1.4.1. A power series is a series of the form
∞∑
n=0

an(x− a)n

where x is a variable, a is a fixed point called the centre of the series and the numbers a0,
a1, . . . are called the coefficients of the series.

In series of this type it is usual to have a convention that (x − a)0 means 1, even for
x = a (where it would read 00, something that one should not normally attempt to define).

So the power series means

a0 + a1(x− a) + a2(x− a)2 + · · ·
When a = 0 the series looks like

a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

Example 1.4.2. In the previous example we have a = 0 and an =
√
n.

We don’t have any simple formula for the sum of that series. From the formula for the
sum of a geometric series we know

1 + (x− a) + (x− a)2 + · · · =
∞∑
n=0

(x− a)n =
∞∑
n=1

(x− a)n−1 =
1

1− (x− a)

for |x− a| < 1. (Here the coefficient of (x− a)n is an = 1 for each n ≥ 0.)

We now summarise (without any attempt at a proof) some of the main facts about
power series.

Theorem 1.4.3. Let
∑∞

n=1 an(x− a)n be a power series.

(a) The series has a radius of convergence, a ‘number’ R ≥ 0 with the property that the
series converges for |x− a| < R but fails to converge for any x with |x− a| > R.

However the ‘number’ R may be ∞, that is it may be that the power series converges
for all x. (It may also be R = 0, in which case the series converges only for x = a.)

(b) If R > 0 we can define f : (a−R, a+R)→ R by

f(x) =
∞∑
n=1

an(x− a)n

The function f(x) will be diffentiable and its derivative is given by

f ′(x) =
∞∑
n=1

nan(x− a)n−1

for |x− a| < R.
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