6

Theorem 1.3.18 (Comparison test — improved version). Suppose $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ are two series and suppose $|x_n| \leq y_n$ for each n. Then

- (a) if the larger (nonnegative) series $\sum_{n=1}^{\infty} y_n$ converges then the smaller series $\sum_{n=1}^{\infty} x_n$ converges (absolutely);
- (b) if the smaller series $\sum_{n=1}^{\infty} x_n$ does not converge then neither does the larger one $\sum_{n=1}^{\infty} y_n$.

Proof. This really is just a combination of the previous version of the comparison test (for series of nonnegative terms) with remarks above about absolute convergence.

If $\sum_{n=1}^{\infty} y_n$ converges then $\sum_{n=1}^{\infty} |x_n|$ converges by the previous version of this test (Theorem 1.3.8 (a)). But that means exactly that $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, hence convergent by Theorem 1.3.16.

If $\sum_{n=1}^{\infty} x_n$ is not convergent, then it can't be absolutely convergent (because of Theorem 1.3.16), which says that $\sum_{n=1}^{\infty} |x_n|$ does not converge. Then $\sum_{n=1}^{\infty} y_n$ can't converge because of previous version of this test (Theorem 1.3.8 (b)).

To exhibit examples of series that are convergent but not absolutely convergent there is the following test.

Theorem 1.3.19 (Alternating series test). Suppose $\sum_{n=1}^{\infty} x_n$ is a series where the terms alternate in sign (so that $x_{n+1}/x_n < 0$ always). Assume also that the absolute values of the terms are decreasing to 0, that is

$$|x_1| \ge |x_2| \ge |x_3| \ge \dots \ge |x_n| \ge |x_{n+1}| \ge \dots \text{ and } \lim_{n \to \infty} x_n = 0.$$

Then the series is convergent.

Proof. We'll prove it for the case where the first term $x_1 > 0$. The case where $x_1 < 0$ would be similar or we could change to the first case by multiplying by -1 (so that $\sum_{n=1}^{\infty} (-x_n)$ converges by the first case and then we can multiply by -1 again to get that $\sum_{n=1}^{\infty} x_n$ converges).

Consider the partial sums $s_n = \sum_{j=1}^n x_j$ and focus first on the even partial sums. We can group the terms in pairs so that

$$s_{2n} = (x_1 + x_2) + (x_3 + x_4) + \dots + (x_{2n-1} + x_{2n}) = \sum_{j=1}^n (x_{2j-1} + x_{2j})$$

But all these bracketed sums of two successive terms are positive (or at least nonnegative) because $x_{2j-1} > 0$, $x_{2j} < 0$ and

$$x_{2j-1} + x_{2j} = |x_{2j-1}| - |x_{2j}| \ge 0.$$

Therefore the sequence of even partial sums $(s_{2n})_{n=1}^{\infty}$ is monotone increasing. If we can show that it is bounded above then the even partial sums will have a limit and we will be nearly done.

If we look at the odd partial sums in a similar way we see that they can be written

$$s_{2n-1} = x_1 + (x_2 + x_3) + (x_4 + x_5) + \dots + (x_{2n-1} + x_{2n-1})$$

and the bracketed sums of two successive terms are now all negative (or not positive because $x_{2j-2} + x_{2j-1} = -|x_{2j-1}| + |x_{2j}| \le 0$. So they are decreasing $x_1 = s_1 \ge s_3 \ge s_5 \ge \cdots$.

Now

$$s_{2n} = s_{2n-1} + x_{2n} \le s_{2n-1} \le s_1 = x_1$$

and so the even partial sums are bounded above (by the first term x_1). So

$$\lim_{n \to \infty} s_{2n}$$

exists (as a finite limit). We need to know that the odd partial sums have the same limit, but that is not so hard to see because

$$s_{2n+1} = s_{2n} + x_{2n+1}$$

and $\lim_{n\to\infty} x_{2n+1} = 0$.

Example 1.3.20. For p > 0, the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \frac{1}{5^p} - \cdots$$

converges (by the alternating series test) but it is not absolutely convergent if 0 .

Proof. The ratio of successive terms is negative, the absolute values $|(-1)^{n-1}/n^p| = 1/n^p$ are decreasing with n and $\lim_{n\to\infty} 1/n^p = 0$.

We know the series of absolute values $\sum_{n=1}^{\infty} 1/n^p$ fails to converge for 0 (seeExamples 1.3.9 (iii) where $p \leq 0$ is included also — but the alternating series test does not apply to $\sum_{n=1}^{\infty} (-1)^{n-1}/n^p$ for $p \leq 0$ because the terms don't decrease in absolute value).

Theorem 1.3.21 (Ratio test). Suppose $\sum_{n=1}^{\infty} x_n$ is a series and

$$r = \lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$$

exists (as a finite nonnegative limit or as ∞).

- (i) if r < 1 then the series is (absolutely) convergent;
- (ii) if r > 1 then the series does not converge;

(iii) if r = 1 no conclusion can be drawn about convergence of the series from this information alone.

Note that the limit we are considering is the limit of the ratio of a term of the series to the previous one. To be more precise the absolute value of that ratio.

Proof. Suppose r < 1 first. Put $\rho = (1 + r)/2$ so that $r < \rho < 1$. Since the limit of $|x_{n+1}|/|x_n|$ is r and $r < \rho$, eventually we must have $|x_{n+1}|/|x_n| < \rho$.

In more precise terms (by using $\varepsilon = \rho - r$ in the ε -N definition of the limit), there is N so that

$$n > N \Rightarrow \frac{|x_{n+1}|}{|x_n|} < \rho$$

The idea is to compare the series $\sum_{n=1}^{\infty} x_n$ to a suitable multiple of the geometric series $\sum_{n=1}^{\infty} \rho^n$.

We take the multiple big enough to deal with all terms up to x_{N+1} , that is we take

$$k = \max_{1 \le j \le N+1} \frac{|x_j|}{\rho^{j-1}}.$$

So then we have $|x_j| \leq k\rho^{j-1}$ for j = 1, 2, ..., N+1. We can then deduce that

$$\frac{|x_{N+2}|}{|x_{N+1}|} < \rho \Rightarrow |x_{N+2}| < \rho |x_{N+1}| \le \rho k \rho^{N+1-1} = k \rho^{(N+2)-1}$$

and show by induction that

$$|x_{N+j}| \le k \rho^{(N_j)-1}$$
 for all $j \in \mathbb{N}$.

Combining that with the way we picked k we have

$$|x_n| \le k\rho^{n-1}$$

for all *n*. Since $\sum_{n=1}^{\infty} k \rho^{n-1}$ converges (it is $k \sum_{n=1}^{\infty} \rho^{n-1} = k/(1-\rho)$), the comparison test tells us that $\sum_{n=1}^{\infty} x_n$ converges (in fact converges absolutely).

Example 1.3.22. For which values of x does $\sum_{n=1}^{\infty} \sqrt{nx^n}$ converge? Solution: Although x is a variable, for fixed x we have a series $\sum_{n=1}^{\infty} t_n$ where the n^{th} -term is

$$t_n = \sqrt{n}x^n$$

To apply the ratio test, we should evaluate

$$r = \lim_{n \to \infty} \frac{|t_{n+1}|}{|t_n|} = \lim_{n \to \infty} \frac{|\sqrt{n+1}x^{n+1}|}{|\sqrt{n}x^n|} = \lim_{n \to \infty} \sqrt{1+1/n}|x| = |x|$$

Since there is a limit we can say that the series definitely converges for |x| < 1 (that is for -1 < x < 1) and does not converge for |x| > 1. The uncertain values of x are just $x = \pm 1$.

In many problems of this type, it can be difficult to deal with these remaining cases. However, in this example the series for x = 1 is $\sum_{n=1}^{\infty} \sqrt{n}$ and for x = -1 it is $\sum_{n=1}^{\infty} (-1)^n \sqrt{n}$. Neither of these can converge because the terms do not tend to 0 as $n \to \infty$.

1.4 Power series

Definition 1.4.1. A *power series* is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n$$

where x is a variable, a is a fixed point called the centre of the series and the numbers a_0 , a_1 , ... are called the coefficients of the series.

In series of this type it is usual to have a convention that $(x - a)^0$ means 1, even for x = a (where it would read 0^0 , something that one should not normally attempt to define).

So the power series means

$$a_0 + a_1(x - a) + a_2(x - a)^2 + \cdots$$

When a = 0 the series looks like

$$a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n$$

Example 1.4.2. In the previous example we have a = 0 and $a_n = \sqrt{n}$.

We don't have any simple formula for the sum of that series. From the formula for the sum of a geometric series we know

$$1 + (x - a) + (x - a)^{2} + \dots = \sum_{n=0}^{\infty} (x - a)^{n} = \sum_{n=1}^{\infty} (x - a)^{n-1} = \frac{1}{1 - (x - a)}$$

for |x-a| < 1. (Here the coefficient of $(x-a)^n$ is $a_n = 1$ for each $n \ge 0$.)

We now summarise (without any attempt at a proof) some of the main facts about power series.

Theorem 1.4.3. Let $\sum_{n=1}^{\infty} a_n (x-a)^n$ be a power series.

(a) The series has a radius of convergence, a 'number' $R \ge 0$ with the property that the series converges for |x - a| < R but fails to converge for any x with |x - a| > R.

However the 'number' R may be ∞ , that is it may be that the power series converges for all x. (It may also be R = 0, in which case the series converges only for x = a.)

(b) If R > 0 we can define $f: (a - R, a + R) \to \mathbb{R}$ by

$$f(x) = \sum_{n=1}^{\infty} a_n (x-a)^n$$

The function f(x) will be differentiable and its derivative is given by

$$f'(x) = \sum_{n=1}^{\infty} na_n (x-a)^{n-1}$$

for |x - a| < R. MA1132 (R. Timoney)

January 30, 2012